{"title":"Unsteady MHD Free Convection in a Radiating Fluid Flow past a Vertically Time-Dependent Moving Plate with Ramped Double-Diffusive Condition","authors":"H. K. Mandal, D. K. Maiti, R. N. Jana","doi":"10.1134/S1810232824030135","DOIUrl":null,"url":null,"abstract":"<p>An unsteady MHD-free convection heat-mass transfer from a viscous, incompressible fluid flow past an infinite vertical moving plate is studied here. The fluid is considered to be electrically conducting and chemically reacting. We consider three types of plate movements: uniform velocity, uniform acceleration, and periodic acceleration. Ramped as well as constant conditions at the plate for both temperature and concentration are considered. We obtain the exact solutions of the governing equations using the method of the Laplace transform technique. The impact of the type of thermal and concentration boundary condition (constant/ramped) at the plate as well as the kind of plate movement on the flow, heat and mass transfer characteristics, are presented and analyzed here. While doing so, we also consider the variation of our governing parameters: thermal and solutal Grashof numbers, magnetic field intensity, radiation (<span>\\(R\\)</span>), chemical reaction (<span>\\(Kc\\)</span>), Prandtl number and Schmidt numbers. It is observed that the presence of buoyancy and other forces close to the plate can be almost nullified due to the imposition of a strong transverse magnetic field. The viscous drag at the plate diminishes (and increases) with the increase of the strength of the applied magnetic field (and <span>\\(R\\)</span> and <span>\\(Kc\\)</span>). The rate of increment of skin friction with respect to time is more for the case of periodic oscillating plate movement. The magnitude of viscous drag is reported as more significant for the constant case compared to the ramped case.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 3","pages":"598 - 621"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824030135","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An unsteady MHD-free convection heat-mass transfer from a viscous, incompressible fluid flow past an infinite vertical moving plate is studied here. The fluid is considered to be electrically conducting and chemically reacting. We consider three types of plate movements: uniform velocity, uniform acceleration, and periodic acceleration. Ramped as well as constant conditions at the plate for both temperature and concentration are considered. We obtain the exact solutions of the governing equations using the method of the Laplace transform technique. The impact of the type of thermal and concentration boundary condition (constant/ramped) at the plate as well as the kind of plate movement on the flow, heat and mass transfer characteristics, are presented and analyzed here. While doing so, we also consider the variation of our governing parameters: thermal and solutal Grashof numbers, magnetic field intensity, radiation (\(R\)), chemical reaction (\(Kc\)), Prandtl number and Schmidt numbers. It is observed that the presence of buoyancy and other forces close to the plate can be almost nullified due to the imposition of a strong transverse magnetic field. The viscous drag at the plate diminishes (and increases) with the increase of the strength of the applied magnetic field (and \(R\) and \(Kc\)). The rate of increment of skin friction with respect to time is more for the case of periodic oscillating plate movement. The magnitude of viscous drag is reported as more significant for the constant case compared to the ramped case.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.