Analysis of Stability of Generation in Quantum Well Lasers

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER Semiconductors Pub Date : 2024-09-17 DOI:10.1134/s1063782624050154
Z. N. Sokolova, L. V. Asryan
{"title":"Analysis of Stability of Generation in Quantum Well Lasers","authors":"Z. N. Sokolova, L. V. Asryan","doi":"10.1134/s1063782624050154","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A stability analysis of two modes of generation in semiconductor quantum well lasers is performed. These modes correspond to two solutions of the rate equations obtained by taking into account the internal optical loss that depends on the density of charge carriers injected into the laser waveguide region and, hence, on the injection current. It is shown that, in contrast to the first (“conventional”) mode of generation, which is always stable and hence observable, the second (“additional”) mode, which is entirely due to the internal loss that depends on the carrier density, is unstable and hence cannot be observed under the steady-state conditions in the laser structure considered in this work.</p>","PeriodicalId":21760,"journal":{"name":"Semiconductors","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063782624050154","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

A stability analysis of two modes of generation in semiconductor quantum well lasers is performed. These modes correspond to two solutions of the rate equations obtained by taking into account the internal optical loss that depends on the density of charge carriers injected into the laser waveguide region and, hence, on the injection current. It is shown that, in contrast to the first (“conventional”) mode of generation, which is always stable and hence observable, the second (“additional”) mode, which is entirely due to the internal loss that depends on the carrier density, is unstable and hence cannot be observed under the steady-state conditions in the laser structure considered in this work.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子阱激光器发电稳定性分析
摘要 对半导体量子阱激光器中产生的两种模式进行了稳定性分析。这些模式与速率方程的两种解相对应,前者考虑了内部光学损耗,后者取决于注入激光波导区的电荷载流子密度,因此也取决于注入电流。结果表明,第一种("传统")生成模式始终是稳定的,因此是可以观测到的,而第二种("附加")模式则完全是由于取决于载流子密度的内部损耗造成的,它是不稳定的,因此在本研究中考虑的激光结构的稳态条件下是无法观测到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Semiconductors
Semiconductors 物理-物理:凝聚态物理
CiteScore
1.50
自引率
28.60%
发文量
131
审稿时长
3-6 weeks
期刊介绍: Publishes the most important work in semiconductor research in the countries of the former Soviet Union. Covers semiconductor theory, transport phenomena in semiconductors, optics, magnetooptics, and electrooptics of semiconductors, semiconductor lasers and semiconductor surface physics. The journal features an extensive book review section.
期刊最新文献
Luminescence in p–i–n Structures with Compensated Quantum Wells Structure and Self-Modulation Features of the Superradiant States in Asymmetric Fabry–Perot Cavity Mechanisms of Optical Gain in Heavily Doped AlxGa1 – xN:Si Structures (x = 0.56–1) Spatial Inhomogeneity of Impact-Ionization Switching Process in Power Si Diode Effect of Electric Field on Excitons in a Quantum Well under Additional Optical Excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1