Formation of Bound States and Control of Their Localization in a Double Quantum Dot at the Edge of the Two-Dimensional Topological Insulator with Magnetic Barriers

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER Semiconductors Pub Date : 2024-09-16 DOI:10.1134/s1063782624040109
E. A. Lavrukhina, D. V. Khomitsky, A. V. Telezhnikov
{"title":"Formation of Bound States and Control of Their Localization in a Double Quantum Dot at the Edge of the Two-Dimensional Topological Insulator with Magnetic Barriers","authors":"E. A. Lavrukhina, D. V. Khomitsky, A. V. Telezhnikov","doi":"10.1134/s1063782624040109","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The model of the bound states in a double quantum dot formed by three magnetic barriers at the edge of two-dimensional topological insulator based on HgTe/CdTe quantum well is developed. The peculiarities of the energy spectrum, the probability density and the spin density of the quantum states are studied as a function of the orientation of the magnetization vector for the magnetic barriers. The wavefunction localization at the left and at the right of the anticrossing point in the spectrum is studied and the conclusion is made on the possibility of switching between the states with the localization area in different quantum dots by varying the polarization of the middle barrier.</p>","PeriodicalId":21760,"journal":{"name":"Semiconductors","volume":"20 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063782624040109","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The model of the bound states in a double quantum dot formed by three magnetic barriers at the edge of two-dimensional topological insulator based on HgTe/CdTe quantum well is developed. The peculiarities of the energy spectrum, the probability density and the spin density of the quantum states are studied as a function of the orientation of the magnetization vector for the magnetic barriers. The wavefunction localization at the left and at the right of the anticrossing point in the spectrum is studied and the conclusion is made on the possibility of switching between the states with the localization area in different quantum dots by varying the polarization of the middle barrier.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维拓扑绝缘体边缘双量子点中束缚态的形成及其定位控制
摘要 建立了基于 HgTe/CdTe 量子阱的二维拓扑绝缘体边缘由三个磁势垒形成的双量子点中的束缚态模型。研究了量子态的能谱、概率密度和自旋密度与磁栅磁化矢量方向的函数关系。研究了能谱中反交叉点左侧和右侧的波函数局域化,并得出结论:通过改变中间势垒的极化,可以在不同量子点的局域化区域的状态之间切换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Semiconductors
Semiconductors 物理-物理:凝聚态物理
CiteScore
1.50
自引率
28.60%
发文量
131
审稿时长
3-6 weeks
期刊介绍: Publishes the most important work in semiconductor research in the countries of the former Soviet Union. Covers semiconductor theory, transport phenomena in semiconductors, optics, magnetooptics, and electrooptics of semiconductors, semiconductor lasers and semiconductor surface physics. The journal features an extensive book review section.
期刊最新文献
Luminescence in p–i–n Structures with Compensated Quantum Wells Structure and Self-Modulation Features of the Superradiant States in Asymmetric Fabry–Perot Cavity Mechanisms of Optical Gain in Heavily Doped AlxGa1 – xN:Si Structures (x = 0.56–1) Spatial Inhomogeneity of Impact-Ionization Switching Process in Power Si Diode Effect of Electric Field on Excitons in a Quantum Well under Additional Optical Excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1