Elevated Temperature Tribological Behavior of Duplex Layer CrN/DLC and Nano Multilayer DLC-W Coatings Deposited on Carburized and Hardened 16MnCr5 Steel
Funsho Olaitan Kolawole, Shola Kolade Kolawole, Newton Kiyoshi Fukumasu, Luis Bernardo Varela, Paulo Konrad Vencovsky, Danilo Assad Ludewigs, Roberto Martins de Souza, André Paulo Tschiptschin
{"title":"Elevated Temperature Tribological Behavior of Duplex Layer CrN/DLC and Nano Multilayer DLC-W Coatings Deposited on Carburized and Hardened 16MnCr5 Steel","authors":"Funsho Olaitan Kolawole, Shola Kolade Kolawole, Newton Kiyoshi Fukumasu, Luis Bernardo Varela, Paulo Konrad Vencovsky, Danilo Assad Ludewigs, Roberto Martins de Souza, André Paulo Tschiptschin","doi":"10.3390/coatings14091197","DOIUrl":null,"url":null,"abstract":"This study investigates the impact of temperature on the tribological performance of duplex layer CrN/DLC and nano-multilayers DLC-W coatings deposited using hybrid PVD-PECVD techniques on carburized and hardened 16MnCr5 discs cut from internal combustion engines valve tappets. Reciprocating dry sliding experiments were conducted at 25 °C, 150 °C, 200 °C, and 250 °C to analyze the high-temperature tribological behavior of the coatings. The wear mechanisms were characterized using SEM, EDS mapping, Raman spectroscopy, and nanoindentation. The lowest coefficient of friction was obtained for CrN/DLC at 25 °C. The CrN/DLC coefficients of friction (COF) increase with temperatures due to increasing adhesive wear. Similarly, DLC-W exhibited a comparable trend with increasing temperature from 25 °C to 250 °C. Both coatings’ wear resistance decreased with higher temperatures due to the transformation of sp3 C bonds to sp2 C bonds, facilitating the plastic deformation of the coatings and afterward of the substrate. The CrN/DLC displayed superior wear resistance to the DLC-W coating across all temperatures. The DLC-W multilayer coating showed poor wear resistance above 150 °C, being completely removed during the testing. Compared to both coatings, the uncoated 16MnCr5 discs exhibited higher coefficients of friction and wear rates at all temperatures. Predominant wear mechanisms observed in the coated discs were adhesive and abrasive. The study revealed a decrease in the coatings’ structural and mechanical properties with rising temperatures. Hard abrasive WC particles were identified as contributing to increased wear rates in the multilayer DLC-W coatings.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"18 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091197","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the impact of temperature on the tribological performance of duplex layer CrN/DLC and nano-multilayers DLC-W coatings deposited using hybrid PVD-PECVD techniques on carburized and hardened 16MnCr5 discs cut from internal combustion engines valve tappets. Reciprocating dry sliding experiments were conducted at 25 °C, 150 °C, 200 °C, and 250 °C to analyze the high-temperature tribological behavior of the coatings. The wear mechanisms were characterized using SEM, EDS mapping, Raman spectroscopy, and nanoindentation. The lowest coefficient of friction was obtained for CrN/DLC at 25 °C. The CrN/DLC coefficients of friction (COF) increase with temperatures due to increasing adhesive wear. Similarly, DLC-W exhibited a comparable trend with increasing temperature from 25 °C to 250 °C. Both coatings’ wear resistance decreased with higher temperatures due to the transformation of sp3 C bonds to sp2 C bonds, facilitating the plastic deformation of the coatings and afterward of the substrate. The CrN/DLC displayed superior wear resistance to the DLC-W coating across all temperatures. The DLC-W multilayer coating showed poor wear resistance above 150 °C, being completely removed during the testing. Compared to both coatings, the uncoated 16MnCr5 discs exhibited higher coefficients of friction and wear rates at all temperatures. Predominant wear mechanisms observed in the coated discs were adhesive and abrasive. The study revealed a decrease in the coatings’ structural and mechanical properties with rising temperatures. Hard abrasive WC particles were identified as contributing to increased wear rates in the multilayer DLC-W coatings.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material