{"title":"Detailed particle breakage of crushable granular materials under cyclic shearing conditions using dyed gypsum technique","authors":"","doi":"10.1016/j.trgeo.2024.101376","DOIUrl":null,"url":null,"abstract":"<div><p>Particle breakage of granular materials under cyclic shearing is related to a variety of engineering problems in geotechnical and transportation engineering. However, there is limited understanding regarding the detailed evolution law of breakage under cyclic shearing. To this end, a series of cyclic simple shear tests were conducted on artificially dyed gypsum particles. It was observed that, in contrast to the particle size distribution of the whole sample, the fractional particle size distributions of gap-graded samples followed a unified breakage evolution path as those of the uniformly graded ones and tended towards fractional fractal distributions. These results have inspired the introduction of the fractional breakage index. Moreover, the breakage-plastic work relationship was further extended to describe the breakage of fractional particles, incorporating the effect of the number of cycles on the plastic work distribution. Finally, based on the concept of breakage-packing, a predictive model for plastic work-breakage-deformation of crushable granular materials under cyclic shearing was proposed. These results have the potential in understanding the detailed particle breakage evolution and establishing a predictive framework for the breakage-induced deformation of crushable granular materials.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224001971","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Particle breakage of granular materials under cyclic shearing is related to a variety of engineering problems in geotechnical and transportation engineering. However, there is limited understanding regarding the detailed evolution law of breakage under cyclic shearing. To this end, a series of cyclic simple shear tests were conducted on artificially dyed gypsum particles. It was observed that, in contrast to the particle size distribution of the whole sample, the fractional particle size distributions of gap-graded samples followed a unified breakage evolution path as those of the uniformly graded ones and tended towards fractional fractal distributions. These results have inspired the introduction of the fractional breakage index. Moreover, the breakage-plastic work relationship was further extended to describe the breakage of fractional particles, incorporating the effect of the number of cycles on the plastic work distribution. Finally, based on the concept of breakage-packing, a predictive model for plastic work-breakage-deformation of crushable granular materials under cyclic shearing was proposed. These results have the potential in understanding the detailed particle breakage evolution and establishing a predictive framework for the breakage-induced deformation of crushable granular materials.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.