Optimizing biomaterial inks: A study on the printability of Carboxymethyl cellulose-Laponite nanocomposite hydrogels and dental pulp stem cells bioprinting

Q1 Computer Science Bioprinting Pub Date : 2024-09-18 DOI:10.1016/j.bprint.2024.e00358
{"title":"Optimizing biomaterial inks: A study on the printability of Carboxymethyl cellulose-Laponite nanocomposite hydrogels and dental pulp stem cells bioprinting","authors":"","doi":"10.1016/j.bprint.2024.e00358","DOIUrl":null,"url":null,"abstract":"<div><p>Tissue engineering approaches require biocompatible materials with precise pre-designed geometry, shape fidelity, and promote cellular functions. Addressing these requirements, our study focused on developing an optimized bioink formulation using carboxymethyl cellulose (CMC) and Laponite hydrogels tailored for extrusion-based three-dimensional bioprinting. To this, we investigated the rheological properties and filament behavior before and during printing. As Laponite concentration increased in CMC solutions, it improved shear-thinning behavior, viscosity, and storage modulus, resulting in well-defined filament characteristics with lower diffusion rates, excellent shape fidelity, and robust printability. Thus, we achieved a suitable biomaterial ink formulation with concentrations of 1 wt% of CMC and 4 wt% of Laponite (1C4L). Subsequently, a statistical analysis guided us to select the optimal parameters for large-scale construct printing: a nozzle speed of 5 mm/s, a print distance of 0.41 mm, and an extrusion multiplier of 1.35. After that, we enhanced the structural integrity of printed hydrogels through ionic crosslinking with calcium chloride (CaCl<sub>2</sub>) and citric acid (CA), revealing higher-strength hydrogels at higher concentrations of CaCl<sub>2</sub>. Finally, we have confirmed the groundbreaking potential of our bioink by integrating dental pulp mesenchymal stem cells (DPSC) into the 1C4L ink. Our bioprinted constructs showed optimized swelling, non-toxic effects, and retained excellent shape fidelity, crucial for creating anatomically accurate tissues. Our findings provide crucial insights linking the rheological analysis, the bioprinting process, and the biological properties of hydrogels, paving the way for their use for tissue engineering and other biomedical applications.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue engineering approaches require biocompatible materials with precise pre-designed geometry, shape fidelity, and promote cellular functions. Addressing these requirements, our study focused on developing an optimized bioink formulation using carboxymethyl cellulose (CMC) and Laponite hydrogels tailored for extrusion-based three-dimensional bioprinting. To this, we investigated the rheological properties and filament behavior before and during printing. As Laponite concentration increased in CMC solutions, it improved shear-thinning behavior, viscosity, and storage modulus, resulting in well-defined filament characteristics with lower diffusion rates, excellent shape fidelity, and robust printability. Thus, we achieved a suitable biomaterial ink formulation with concentrations of 1 wt% of CMC and 4 wt% of Laponite (1C4L). Subsequently, a statistical analysis guided us to select the optimal parameters for large-scale construct printing: a nozzle speed of 5 mm/s, a print distance of 0.41 mm, and an extrusion multiplier of 1.35. After that, we enhanced the structural integrity of printed hydrogels through ionic crosslinking with calcium chloride (CaCl2) and citric acid (CA), revealing higher-strength hydrogels at higher concentrations of CaCl2. Finally, we have confirmed the groundbreaking potential of our bioink by integrating dental pulp mesenchymal stem cells (DPSC) into the 1C4L ink. Our bioprinted constructs showed optimized swelling, non-toxic effects, and retained excellent shape fidelity, crucial for creating anatomically accurate tissues. Our findings provide crucial insights linking the rheological analysis, the bioprinting process, and the biological properties of hydrogels, paving the way for their use for tissue engineering and other biomedical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化生物材料墨水:羧甲基纤维素-皂石纳米复合水凝胶和牙髓干细胞生物打印的可打印性研究
组织工程方法要求生物相容性材料具有精确的预设计几何形状、形状保真度和促进细胞功能。为了满足这些要求,我们的研究重点是利用羧甲基纤维素(CMC)和皂石水凝胶开发一种优化的生物墨水配方,以适应基于挤压的三维生物打印。为此,我们研究了打印前和打印过程中的流变特性和长丝行为。随着皂石在 CMC 溶液中浓度的增加,它改善了剪切稀化行为、粘度和存储模量,从而产生了具有较低扩散率、出色的形状保真度和稳健的打印性的定义明确的长丝特性。因此,我们获得了浓度为 1 wt% 的 CMC 和 4 wt% 的皂石(1C4L)的合适生物材料墨水配方。随后,在统计分析的指导下,我们选择了大规模构造打印的最佳参数:喷嘴速度为 5 毫米/秒,打印距离为 0.41 毫米,挤出倍率为 1.35。之后,我们通过氯化钙(CaCl2)和柠檬酸(CA)的离子交联增强了打印水凝胶的结构完整性,发现CaCl2浓度越高,水凝胶强度越高。最后,通过将牙髓间充质干细胞(DPSC)整合到 1C4L 墨水中,我们证实了生物墨水的突破性潜力。我们的生物打印构建体显示出优化的溶胀、无毒效果,并保持了极佳的形状保真度,这对于创建解剖精确的组织至关重要。我们的研究结果为流变分析、生物打印过程和水凝胶的生物特性之间的联系提供了重要的见解,为将其用于组织工程和其他生物医学应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
期刊最新文献
3D and 4D printed materials for cardiac transplantation: Advances in biogenerative engineering Evolution of toxicity testing platforms from 2D to advanced 3D bioprinting for safety assessment of drugs Robust design optimization of Critical Quality Indicators (CQIs) of medical-graded polycaprolactone (PCL) in bioplotting Recent advances in the development of stereolithography-based additive manufacturing processes: A review of applications and challenges Optimizing biomaterial inks: A study on the printability of Carboxymethyl cellulose-Laponite nanocomposite hydrogels and dental pulp stem cells bioprinting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1