Robust design optimization of Critical Quality Indicators (CQIs) of medical-graded polycaprolactone (PCL) in bioplotting

Q1 Computer Science Bioprinting Pub Date : 2024-10-05 DOI:10.1016/j.bprint.2024.e00361
{"title":"Robust design optimization of Critical Quality Indicators (CQIs) of medical-graded polycaprolactone (PCL) in bioplotting","authors":"","doi":"10.1016/j.bprint.2024.e00361","DOIUrl":null,"url":null,"abstract":"<div><div>Polycaprolactone (PCL), either in its pure grade or as a polymeric matrix for bio-composites, plays a key role in the biomedical and bioengineering industries. It is also considered a multifunctional and versatile polymer for bioprinting and bioplotting purposes, especially in tissue engineering. Herein, an undiscovered yet valuable aspect of PCL extrusion-based bioprinting, such as the predictability of Critical Quality Indicators (CQIs), is investigated in depth. With the aid of the robust L25 orthogonal matrix design, the six most generic and device-independent control factors proved their impact on quality metrics such as global porosity, dimensional conformity, and surface roughness, determined with the aid of highly evolved Nondestructive Testing (NDT) and algorithms. To this end, 25 experimental runs were set, and 125 specimens were fabricated using an industrial-scale bio-plotter and medical-graded polycaprolactone. Various infill densities (ID), layer thicknesses (LT), raster deposition angles (RDA), printing speeds (PS), nozzle temperatures (NT), and bed temperatures (BT) were applied. CQIs were determined using optical profilometry and microscopy, and micro-computed tomography. Quadratic predictive equations were compiled and verified using two additional, well-chosen experimental runs. These generally applicable predictive models carry a massive amount of research and industrial merit, as they ensure visibility in bioprinting with PCL.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Polycaprolactone (PCL), either in its pure grade or as a polymeric matrix for bio-composites, plays a key role in the biomedical and bioengineering industries. It is also considered a multifunctional and versatile polymer for bioprinting and bioplotting purposes, especially in tissue engineering. Herein, an undiscovered yet valuable aspect of PCL extrusion-based bioprinting, such as the predictability of Critical Quality Indicators (CQIs), is investigated in depth. With the aid of the robust L25 orthogonal matrix design, the six most generic and device-independent control factors proved their impact on quality metrics such as global porosity, dimensional conformity, and surface roughness, determined with the aid of highly evolved Nondestructive Testing (NDT) and algorithms. To this end, 25 experimental runs were set, and 125 specimens were fabricated using an industrial-scale bio-plotter and medical-graded polycaprolactone. Various infill densities (ID), layer thicknesses (LT), raster deposition angles (RDA), printing speeds (PS), nozzle temperatures (NT), and bed temperatures (BT) were applied. CQIs were determined using optical profilometry and microscopy, and micro-computed tomography. Quadratic predictive equations were compiled and verified using two additional, well-chosen experimental runs. These generally applicable predictive models carry a massive amount of research and industrial merit, as they ensure visibility in bioprinting with PCL.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物印染中医用级聚己内酯(PCL)关键质量指标(CQIs)的稳健优化设计
聚己内酯(PCL),无论是纯品还是作为生物复合材料的聚合物基质,都在生物医学和生物工程行业发挥着重要作用。它也被认为是一种多功能聚合物,可用于生物打印和生物制图,特别是在组织工程方面。本文深入研究了基于 PCL 挤压技术的生物打印技术中一个尚未发现但却很有价值的方面,如关键质量指标(CQIs)的可预测性。借助稳健的 L25 正交矩阵设计,六个最通用且与设备无关的控制因素证明了它们对全局孔隙率、尺寸一致性和表面粗糙度等质量指标的影响,这些指标是借助高度进化的无损检测(NDT)和算法确定的。为此,设定了 25 次实验运行,并使用工业规模的生物绘图仪和医用级聚己内酯制作了 125 个试样。实验中采用了不同的填充密度 (ID)、层厚 (LT)、光栅沉积角度 (RDA)、打印速度 (PS)、喷嘴温度 (NT) 和床层温度 (BT)。使用光学轮廓仪、显微镜和微型计算机断层扫描确定了 CQI。通过另外两次精心选择的实验运行,编制并验证了四元预测方程。这些普遍适用的预测模型具有巨大的研究和工业价值,因为它们确保了 PCL 生物打印的可见性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
期刊最新文献
3D and 4D printed materials for cardiac transplantation: Advances in biogenerative engineering Evolution of toxicity testing platforms from 2D to advanced 3D bioprinting for safety assessment of drugs Robust design optimization of Critical Quality Indicators (CQIs) of medical-graded polycaprolactone (PCL) in bioplotting Recent advances in the development of stereolithography-based additive manufacturing processes: A review of applications and challenges Optimizing biomaterial inks: A study on the printability of Carboxymethyl cellulose-Laponite nanocomposite hydrogels and dental pulp stem cells bioprinting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1