Weijiao Wang , Yaobin Wang , Shiyan Zhai , Haoming Xia , Dong Wang , Hongquan Song
{"title":"Climate change driven by LUCC reduced NPP in the Yellow River Basin, China","authors":"Weijiao Wang , Yaobin Wang , Shiyan Zhai , Haoming Xia , Dong Wang , Hongquan Song","doi":"10.1016/j.gloplacha.2024.104586","DOIUrl":null,"url":null,"abstract":"<div><p>Anthropogenic activities and the resulting climate change affect the type, structure, and function of ecosystems. Understanding vegetation dynamics related to anthropogenic activities and climate change is critical to address the terrestrial carbon cycle in the context of global warming. The objective of this study is to quantify the effects of human-induced land use and land cover change (LUCC) and LUCC-induced climate change on terrestrial net primary productivity (NPP) in the Yellow River Basin (YRB) during 2000–2020 using Weather Research and Forecasting (WRF) model and Integrated Biosphere Simulator (IBIS) model through different experimental scenarios. Results indicated that LUCC can cause an increase in NPP of 1.2 ± 0.67 gC m<sup>−2</sup> yr<sup>−1</sup> in YRB. The increased precipitation and decreased temperature due to LUCC showed weak negative effect on annual mean NPP in YRB (−0.2 ± 0.74 gC m<sup>−2</sup> yr<sup>−1</sup>). The coupling of LUCC and LUCC-induced climate change increased annual mean NPP approximately 0.6 ± 0.86 gC m<sup>−2</sup> yr<sup>−1</sup>. The impacts of LUCC and LUCC-induced climate change and their coupling effects on NPP were greatest in spring, increasing NPP by 5.1 ± 0.51, 3.4 ± 0.41, and 6.1 ± 0.79 gC m<sup>−2</sup> yr<sup>−1</sup>, respectively. These findings provide important guidance for the sustainable and adaptive management of terrestrial ecosystems in river basin in the context of global change.</p></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124002339","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Anthropogenic activities and the resulting climate change affect the type, structure, and function of ecosystems. Understanding vegetation dynamics related to anthropogenic activities and climate change is critical to address the terrestrial carbon cycle in the context of global warming. The objective of this study is to quantify the effects of human-induced land use and land cover change (LUCC) and LUCC-induced climate change on terrestrial net primary productivity (NPP) in the Yellow River Basin (YRB) during 2000–2020 using Weather Research and Forecasting (WRF) model and Integrated Biosphere Simulator (IBIS) model through different experimental scenarios. Results indicated that LUCC can cause an increase in NPP of 1.2 ± 0.67 gC m−2 yr−1 in YRB. The increased precipitation and decreased temperature due to LUCC showed weak negative effect on annual mean NPP in YRB (−0.2 ± 0.74 gC m−2 yr−1). The coupling of LUCC and LUCC-induced climate change increased annual mean NPP approximately 0.6 ± 0.86 gC m−2 yr−1. The impacts of LUCC and LUCC-induced climate change and their coupling effects on NPP were greatest in spring, increasing NPP by 5.1 ± 0.51, 3.4 ± 0.41, and 6.1 ± 0.79 gC m−2 yr−1, respectively. These findings provide important guidance for the sustainable and adaptive management of terrestrial ecosystems in river basin in the context of global change.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.