{"title":"Magnetron sputtered nickel oxide with suppressed interfacial defect states for efficient inverted perovskite solar cells","authors":"","doi":"10.1016/j.jechem.2024.08.057","DOIUrl":null,"url":null,"abstract":"<div><p>Widely used spin-coated nickle oxide (NiO<em><sub>x</sub></em>) based perovskite solar cells often suffer from severe interfacial reactions between the NiO<em><sub>x</sub></em> and adjacent perovskite layers due to surface defect states, which inherently impair device performance in a long-term view, even with surface molecule passivation. In this study, we developed high-quality magnetron-sputtered NiO<em><sub>x</sub></em> thin films through detailed process optimization, and compared systematically sputtered and spin-coated NiO<em><sub>x</sub></em> thin film surfaces from materials to devices. These sputtered NiO<em><sub>x</sub></em> films exhibit improved crystallinity, smoother surfaces, and significantly reduced Ni<sup>3+</sup> or Ni vacancies compared to their spin-coated counterparts. Consequently, the interface between the perovskite and sputtered NiO<em><sub>x</sub></em> film shows a substantially reduced density of defect states. Perovskite solar cells (PSCs) fabricated with our optimally sputtered NiO<em><sub>x</sub></em> films achieved a high power conversion efficiency (PCE) of up to 19.93% and demonstrated enhanced stability, maintaining 86.2% efficiency during 500 h of maximum power point tracking under one standard sun illumination. Moreover, with the surface modification using (4-(2,7-dibromo-9,9-dimethylacridin-10(9H)-yl)butyl)phosphonic acid (DMAcPA), the device PCE was further promoted to 23.07%, which is the highest value reported for sputtered NiO<em><sub>x</sub></em> based PSCs so far.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006132","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Widely used spin-coated nickle oxide (NiOx) based perovskite solar cells often suffer from severe interfacial reactions between the NiOx and adjacent perovskite layers due to surface defect states, which inherently impair device performance in a long-term view, even with surface molecule passivation. In this study, we developed high-quality magnetron-sputtered NiOx thin films through detailed process optimization, and compared systematically sputtered and spin-coated NiOx thin film surfaces from materials to devices. These sputtered NiOx films exhibit improved crystallinity, smoother surfaces, and significantly reduced Ni3+ or Ni vacancies compared to their spin-coated counterparts. Consequently, the interface between the perovskite and sputtered NiOx film shows a substantially reduced density of defect states. Perovskite solar cells (PSCs) fabricated with our optimally sputtered NiOx films achieved a high power conversion efficiency (PCE) of up to 19.93% and demonstrated enhanced stability, maintaining 86.2% efficiency during 500 h of maximum power point tracking under one standard sun illumination. Moreover, with the surface modification using (4-(2,7-dibromo-9,9-dimethylacridin-10(9H)-yl)butyl)phosphonic acid (DMAcPA), the device PCE was further promoted to 23.07%, which is the highest value reported for sputtered NiOx based PSCs so far.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy