{"title":"Enhanced solid-electrolyte interface efficiency for practically viable hydrogen-air fuel cell systems","authors":"","doi":"10.1016/j.jechem.2024.08.046","DOIUrl":null,"url":null,"abstract":"<div><p>Proton exchange membrane fuel cells (PEMFCs) provide an appealing sustainable energy system, with the solid-electrolyte membrane playing a crucial role in its overall performance. Currently, sulfonated poly(1,4-phenylene ether-ether sulfone) (SPEES), an aromatic hydrocarbon polymer, has garnered considerable attention as an alternative to Nafion polymers. However, the long-term durability and stability of SPEES present a significant challenge. In this context, we introduce a potential solution in the form of an additive, specifically a core–shell-based amine-functionalized iron titanate (A–Fe<sub>2</sub>TiO<sub>5</sub>), which holds promise for improving the lifetime, proton conductivity, and power density of SPEES in PEMFCs. The modified SPEES/A–Fe<sub>2</sub>TiO<sub>5</sub> composite membranes exhibited notable characteristics, including high water uptake, enhanced thermomechanical stability, and oxidative stability. Notably, the SPEES membrane loaded with 1.2 wt% of A–Fe<sub>2</sub>TiO<sub>5</sub> demonstrates a maximum proton conductivity of 155 mS cm<sup>−1</sup>, a twofold increase compared to the SPEES membrane, at 80 °C under 100% relative humidity (RH). Furthermore, the 1.2 wt% of A–Fe<sub>2</sub>TiO<sub>5</sub>/SPEES composite membranes exhibited a maximum power density of 397.37 mW cm<sup>−2</sup> and a current density of 1148 mA cm<sup>−2</sup> at 60 °C under 100% RH, with an open-circuit voltage decay of 0.05 mV/h during 103 h of continuous operation. This study offers significant insights into the development and understanding of innovative SPEES nanocomposite membranes for PEMFC applications.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Proton exchange membrane fuel cells (PEMFCs) provide an appealing sustainable energy system, with the solid-electrolyte membrane playing a crucial role in its overall performance. Currently, sulfonated poly(1,4-phenylene ether-ether sulfone) (SPEES), an aromatic hydrocarbon polymer, has garnered considerable attention as an alternative to Nafion polymers. However, the long-term durability and stability of SPEES present a significant challenge. In this context, we introduce a potential solution in the form of an additive, specifically a core–shell-based amine-functionalized iron titanate (A–Fe2TiO5), which holds promise for improving the lifetime, proton conductivity, and power density of SPEES in PEMFCs. The modified SPEES/A–Fe2TiO5 composite membranes exhibited notable characteristics, including high water uptake, enhanced thermomechanical stability, and oxidative stability. Notably, the SPEES membrane loaded with 1.2 wt% of A–Fe2TiO5 demonstrates a maximum proton conductivity of 155 mS cm−1, a twofold increase compared to the SPEES membrane, at 80 °C under 100% relative humidity (RH). Furthermore, the 1.2 wt% of A–Fe2TiO5/SPEES composite membranes exhibited a maximum power density of 397.37 mW cm−2 and a current density of 1148 mA cm−2 at 60 °C under 100% RH, with an open-circuit voltage decay of 0.05 mV/h during 103 h of continuous operation. This study offers significant insights into the development and understanding of innovative SPEES nanocomposite membranes for PEMFC applications.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy