Xiaoli Wei, Dongqing Wu, Jing Li, Miaomiao Wu, Qianhui Li, Zhaodi Che, Xu Cheng, Qianying Cheng, Fan Yin, Hao Zhang, Xuefu Wang, Shabnam Abtahi, Li Zuo, Lei Hang, Lili Ma, Wei-Ting Kuo, Xiaoying Liu, Jerrold R. Turner, Hua Wang, Jia Xiao, Fei Wang
{"title":"Myeloid beta-arrestin 2 depletion attenuates metabolic dysfunction-associated steatohepatitis via the metabolic reprogramming of macrophages","authors":"Xiaoli Wei, Dongqing Wu, Jing Li, Miaomiao Wu, Qianhui Li, Zhaodi Che, Xu Cheng, Qianying Cheng, Fan Yin, Hao Zhang, Xuefu Wang, Shabnam Abtahi, Li Zuo, Lei Hang, Lili Ma, Wei-Ting Kuo, Xiaoying Liu, Jerrold R. Turner, Hua Wang, Jia Xiao, Fei Wang","doi":"10.1016/j.cmet.2024.08.010","DOIUrl":null,"url":null,"abstract":"<p>Macrophage-mediated inflammation has been implicated in the pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH); however, the immunometabolic program underlying the regulation of macrophage activation remains unclear. Beta-arrestin 2, a multifunctional adaptor protein, is highly expressed in bone marrow tissues and macrophages and is involved in metabolism disorders. Here, we observed that β-arrestin 2 expression was significantly increased in the liver macrophages and circulating monocytes of patients with MASH compared with healthy controls and positively correlated with the severity of metabolic dysfunction-associated steatotic liver disease (MASLD). Global or myeloid <em>Arrb2</em> deficiency prevented the development of MASH in mice. Further study showed that β-arrestin 2 acted as an adaptor protein and promoted ubiquitination of immune responsive gene 1 (IRG1) to prevent increased itaconate production in macrophages, which resulted in enhanced succinate dehydrogenase activity, thereby promoting the release of mitochondrial reactive oxygen species and M1 polarization. Myeloid β-arrestin 2 depletion may be a potential approach for MASH.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"114 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.08.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Macrophage-mediated inflammation has been implicated in the pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH); however, the immunometabolic program underlying the regulation of macrophage activation remains unclear. Beta-arrestin 2, a multifunctional adaptor protein, is highly expressed in bone marrow tissues and macrophages and is involved in metabolism disorders. Here, we observed that β-arrestin 2 expression was significantly increased in the liver macrophages and circulating monocytes of patients with MASH compared with healthy controls and positively correlated with the severity of metabolic dysfunction-associated steatotic liver disease (MASLD). Global or myeloid Arrb2 deficiency prevented the development of MASH in mice. Further study showed that β-arrestin 2 acted as an adaptor protein and promoted ubiquitination of immune responsive gene 1 (IRG1) to prevent increased itaconate production in macrophages, which resulted in enhanced succinate dehydrogenase activity, thereby promoting the release of mitochondrial reactive oxygen species and M1 polarization. Myeloid β-arrestin 2 depletion may be a potential approach for MASH.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.