AlphaCRV: a pipeline for identifying accurate binder topologies in mass-modeling with AlphaFold.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-09-06 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae131
Francisco J Guzmán-Vega, Stefan T Arold
{"title":"AlphaCRV: a pipeline for identifying accurate binder topologies in mass-modeling with AlphaFold.","authors":"Francisco J Guzmán-Vega, Stefan T Arold","doi":"10.1093/bioadv/vbae131","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The speed and accuracy of deep learning-based structure prediction algorithms make it now possible to perform in silico \"pull-downs\" to identify protein-protein interactions on a proteome-wide scale. However, on such a large scale, existing scoring algorithms are often insufficient to discriminate biologically relevant interactions from false positives.</p><p><strong>Results: </strong>Here, we introduce AlphaCRV, a Python package that helps identify correct interactors in a one-against-many AlphaFold screen by clustering, ranking, and visualizing conserved binding topologies, based on protein sequence and fold.</p><p><strong>Availability and implementation: </strong>AlphaCRV is a Python package for Linux, freely available at https://github.com/strubelab/AlphaCRV.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae131"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The speed and accuracy of deep learning-based structure prediction algorithms make it now possible to perform in silico "pull-downs" to identify protein-protein interactions on a proteome-wide scale. However, on such a large scale, existing scoring algorithms are often insufficient to discriminate biologically relevant interactions from false positives.

Results: Here, we introduce AlphaCRV, a Python package that helps identify correct interactors in a one-against-many AlphaFold screen by clustering, ranking, and visualizing conserved binding topologies, based on protein sequence and fold.

Availability and implementation: AlphaCRV is a Python package for Linux, freely available at https://github.com/strubelab/AlphaCRV.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AlphaCRV:利用 AlphaFold 在质量建模中识别准确粘合剂拓扑结构的管道。
动机基于深度学习的结构预测算法的速度和准确性使得在整个蛋白质组范围内进行硅学 "下拉"(pull-downs)以识别蛋白质-蛋白质相互作用成为可能。然而,在如此大的范围内,现有的评分算法往往不足以区分生物相关相互作用和假阳性相互作用:在这里,我们介绍了 AlphaCRV,这是一个 Python 软件包,它可以根据蛋白质序列和折叠,对保守的结合拓扑进行聚类、排序和可视化,从而帮助在一对多的 AlphaFold 筛选中识别出正确的相互作用者:AlphaCRV 是一个适用于 Linux 的 Python 软件包,可从 https://github.com/strubelab/AlphaCRV 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Predicting CRISPR-Cas9 off-target effects in human primary cells using bidirectional LSTM with BERT embedding. Genal: a Python toolkit for genetic risk scoring and Mendelian randomization. QOMIC: quantum optimization for motif identification. SurfR: Riding the wave of RNA-seq data with a comprehensive bioconductor package to identify surface protein-coding genes. Exploring the role of the Rab network in epithelial-to-mesenchymal transition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1