Erin E Crotty, Vera A Paulson, Rebecca Ronsley, Nicholas A Vitanza, Amy Lee, Jason Hauptman, Hannah E Goldstein, Christina M Lockwood, Sarah E S Leary, Bonnie L Cole
{"title":"Cerebrospinal fluid liquid biopsy by low-pass whole genome sequencing for clinical disease monitoring in pediatric embryonal tumors.","authors":"Erin E Crotty, Vera A Paulson, Rebecca Ronsley, Nicholas A Vitanza, Amy Lee, Jason Hauptman, Hannah E Goldstein, Christina M Lockwood, Sarah E S Leary, Bonnie L Cole","doi":"10.1093/noajnl/vdae126","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Liquid biopsy assays that detect cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) are a promising tool for disease monitoring in pediatric patients with primary central nervous system (CNS) tumors. As a compliment to tissue-derived molecular analyses, CSF liquid biopsy has the potential to transform risk stratification, prognostication, and precision medicine approaches.</p><p><strong>Methods: </strong>In this pilot study, we evaluated a clinical pipeline to determine feasibility and sensitivity of low-pass whole genome sequencing (LP-WGS) of CSF-derived cfDNA from patients with CNS embryonal tumors. Thirty-two longitudinal CSF samples collected from 17 patients with molecularly characterized medulloblastoma (12), embryonal tumor with multilayered rosettes (2), CNS embryonal tumor, not elsewhere classified (NEC) (2), and atypical teratoid/rhabdoid tumor (1) were analyzed.</p><p><strong>Results: </strong>Adequate CSF-derived cfDNA for LP-WGS analysis was obtained in 94% of samples (30/32). Copy number variants compatible with neoplasia were detected in 90% (27/30) and included key alterations, such as isodicentric ch17, monosomy 6, and <i>MYCN</i> amplification, among others. Compared to tissue specimens, LP-WGS detected additional aberrations in CSF not previously identified in corresponding primary tumor specimens, suggesting a more comprehensive profile of tumor heterogeneity or evolution of cfDNA profiles over time. Among the 12 CSF samples obtained at initial staging, only 2 (17%) were cytologically positive, compared to 11 (92%) that were copy number positive by LP-WGS.</p><p><strong>Conclusions: </strong>LP-WGS of CSF-derived cfDNA is feasible using a clinical platform, with greater sensitivity for tumor detection compared to conventional CSF cytologic analysis at initial staging. Large prospective studies are needed to further evaluate LP-WGS as a predictive biomarker.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Liquid biopsy assays that detect cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) are a promising tool for disease monitoring in pediatric patients with primary central nervous system (CNS) tumors. As a compliment to tissue-derived molecular analyses, CSF liquid biopsy has the potential to transform risk stratification, prognostication, and precision medicine approaches.
Methods: In this pilot study, we evaluated a clinical pipeline to determine feasibility and sensitivity of low-pass whole genome sequencing (LP-WGS) of CSF-derived cfDNA from patients with CNS embryonal tumors. Thirty-two longitudinal CSF samples collected from 17 patients with molecularly characterized medulloblastoma (12), embryonal tumor with multilayered rosettes (2), CNS embryonal tumor, not elsewhere classified (NEC) (2), and atypical teratoid/rhabdoid tumor (1) were analyzed.
Results: Adequate CSF-derived cfDNA for LP-WGS analysis was obtained in 94% of samples (30/32). Copy number variants compatible with neoplasia were detected in 90% (27/30) and included key alterations, such as isodicentric ch17, monosomy 6, and MYCN amplification, among others. Compared to tissue specimens, LP-WGS detected additional aberrations in CSF not previously identified in corresponding primary tumor specimens, suggesting a more comprehensive profile of tumor heterogeneity or evolution of cfDNA profiles over time. Among the 12 CSF samples obtained at initial staging, only 2 (17%) were cytologically positive, compared to 11 (92%) that were copy number positive by LP-WGS.
Conclusions: LP-WGS of CSF-derived cfDNA is feasible using a clinical platform, with greater sensitivity for tumor detection compared to conventional CSF cytologic analysis at initial staging. Large prospective studies are needed to further evaluate LP-WGS as a predictive biomarker.