Preparation and characterization of biochar from four different solid wastes and its ampicillin adsorption performance.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2024-09-24 DOI:10.1007/s10653-024-02221-x
Junxin Yu, Tianyu Gu, Ruiying Wang, Bing Li, Zhiying Dong, Xiaohui Zhu, Zhexuan Li, Tiantian Hu, Ying Huang
{"title":"Preparation and characterization of biochar from four different solid wastes and its ampicillin adsorption performance.","authors":"Junxin Yu, Tianyu Gu, Ruiying Wang, Bing Li, Zhiying Dong, Xiaohui Zhu, Zhexuan Li, Tiantian Hu, Ying Huang","doi":"10.1007/s10653-024-02221-x","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of biochar (BC) production from organic waste with ampicillin (AMP), an emerging pollutant, adsorption is a novel and promising treatment approach. In this study, peanut shells, coffee grounds, digestates, and oyster shells were used for BC production. Among these, the use of anaerobic digestate from food waste fermentation to produce extracts for antibiotic adsorption is relatively unexplored. The pyrolysis temperature was determined using thermogravimetric analysis (TGA) and the materials were characterized with BET, SEM, FTIR, and XRD. The TGA results indicate that PSB, CRB, and DSB underwent pyrolysis involving cellulose, hemicellulose, and lignin, whereas OSB underwent crystal formation. Characterization revealed that DSB has more functional groups, a superior mesoporous structure, appropriate O/C ratio, and trace amounts of calcite crystals, which are favorable for AMP adsorption. Adsorption experiments demonstrate that all four materials adhere to the Freundlich and Langmuir isotherm and Elovich kinetic models, indicating predominant physical adsorption, with some chemical adsorption also present. Thermodynamic studies demonstrate that BC is spontaneous during adsorption and is a heat-absorbing reaction. DSB exhibits the strongest AMP adsorption. A 53.81 mg g<sup>-1</sup> adsorbance was obtained at a dosage of 150 mg, pH = 2, and 60 °C. This study introduces innovative approaches for managing waste types and provides data to support the selection of suitable solid wastes for the preparation of BC with excellent adsorption properties. Furthermore, it lays the groundwork for future studies aimed at enhancing the AMP treatment efficacy.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"440"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02221-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of biochar (BC) production from organic waste with ampicillin (AMP), an emerging pollutant, adsorption is a novel and promising treatment approach. In this study, peanut shells, coffee grounds, digestates, and oyster shells were used for BC production. Among these, the use of anaerobic digestate from food waste fermentation to produce extracts for antibiotic adsorption is relatively unexplored. The pyrolysis temperature was determined using thermogravimetric analysis (TGA) and the materials were characterized with BET, SEM, FTIR, and XRD. The TGA results indicate that PSB, CRB, and DSB underwent pyrolysis involving cellulose, hemicellulose, and lignin, whereas OSB underwent crystal formation. Characterization revealed that DSB has more functional groups, a superior mesoporous structure, appropriate O/C ratio, and trace amounts of calcite crystals, which are favorable for AMP adsorption. Adsorption experiments demonstrate that all four materials adhere to the Freundlich and Langmuir isotherm and Elovich kinetic models, indicating predominant physical adsorption, with some chemical adsorption also present. Thermodynamic studies demonstrate that BC is spontaneous during adsorption and is a heat-absorbing reaction. DSB exhibits the strongest AMP adsorption. A 53.81 mg g-1 adsorbance was obtained at a dosage of 150 mg, pH = 2, and 60 °C. This study introduces innovative approaches for managing waste types and provides data to support the selection of suitable solid wastes for the preparation of BC with excellent adsorption properties. Furthermore, it lays the groundwork for future studies aimed at enhancing the AMP treatment efficacy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用四种不同固体废物制备生物炭并确定其特性及其氨苄西林吸附性能。
将从有机废物中生产生物炭(BC)与吸附氨苄西林(AMP)(一种新出现的污染物)结合起来,是一种新颖且前景广阔的处理方法。本研究利用花生壳、咖啡渣、消化物和牡蛎壳生产生物炭。其中,利用食物垃圾发酵产生的厌氧消化物生产用于吸附抗生素的萃取物的研究相对较少。利用热重分析法(TGA)确定了热解温度,并用 BET、扫描电镜、傅立叶变换红外光谱和 XRD 对材料进行了表征。热重分析结果表明,PSB、CRB 和 DSB 发生了涉及纤维素、半纤维素和木质素的热解,而 OSB 则形成了晶体。表征结果表明,DSB 具有更多的官能团、更优越的介孔结构、适当的 O/C 比以及微量的方解石晶体,这些都有利于 AMP 的吸附。吸附实验表明,这四种材料都符合 Freundlich 和 Langmuir 等温线以及 Elovich 动力学模型,表明物理吸附占主导地位,同时也存在一些化学吸附。热力学研究表明,BC 在吸附过程中是自发的,是一种吸热反应。DSB 具有最强的 AMP 吸附能力。在用量为 150 毫克、pH = 2 和 60 °C 时,吸附量为 53.81 毫克/克。这项研究介绍了管理废物类型的创新方法,并为选择合适的固体废物制备具有优异吸附特性的 BC 提供了数据支持。此外,它还为今后旨在提高 AMP 处理效果的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Mercury in saliva, milk, and hair of nursing mothers in southeastern Iranian mothers: levels, distribution and risk assessment. Radon quantification in water and dose estimation via inhalation and ingestion across age groups in the Pattan region of North Kashmir, India. Effects of microplastics on 3,5-dichloroaniline adsorption, degradation, bioaccumulation and phytotoxicity in soil-chive systems. The impact of prenatal exposure to fine particulate matter and its components on maternal and neonatal thyroid function and birth weight: a prospective cohort study. Chemical analysis of toxic elements: total cadmium, lead, mercury, arsenic and inorganic arsenic in local and imported rice consumed in the Kingdom of Saudi Arabia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1