Hao Li, Wenjie Song, Zhichao Li, Dagula Du, Changwei Lü, Zhongli Wang, Jiang He
{"title":"Adsorption of As(III) to schwertmannite: impact factors and phase transformation.","authors":"Hao Li, Wenjie Song, Zhichao Li, Dagula Du, Changwei Lü, Zhongli Wang, Jiang He","doi":"10.1007/s10653-025-02433-9","DOIUrl":null,"url":null,"abstract":"<p><p>The phase transformation of Schwertmannite (SCH) can significantly affect the interface behavior and toxic effect of As(III). Previous studies have predominantly focused on pollutants adsorption by SCH on a long-time scale (such as 30 days), without paying attention to the adsorption characteristics within shorter time frames (e.g., within 24 h). This work compared the adsorption characteristics of As(III) on three synthesized SCHs under various environmental conditions. The adsorption of As(III) by M-SCH (SCH synthesized by KMnO<sub>4</sub> oxidation method) and Y-SCH (SCH synthesized by ethanol modification method) were governed by physical adsorption, while that of H-SCH (SCH synthesized by H<sub>2</sub>O<sub>2</sub> oxidation method) was dominated by chemisorption. Acidity, selected ions (NO<sub>3</sub><sup>-</sup>, Ca<sup>2+</sup>, CO<sub>3</sub><sup>2-</sup>, and PO<sub>4</sub><sup>3-</sup>), fulvic acid (FA), and Sb(III) adversely impacted the As(III) adsorption by SCHs. Furthermore, alkalinity, selected ions and FA induced the phase transformation of SCHs to iron hydroxide, while no transformation was observed in the presence of Sb(III) and Cr(VI). The iron hydroxide observed in this study is presumed to represent an intermediate stage in the transformation of SCH into goethite. These findings enhance our comprehension of the transformation process of SCH to goethite and provide scientific insights for SCH utilization in immobilizing As(III) in water.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 4","pages":"122"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02433-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The phase transformation of Schwertmannite (SCH) can significantly affect the interface behavior and toxic effect of As(III). Previous studies have predominantly focused on pollutants adsorption by SCH on a long-time scale (such as 30 days), without paying attention to the adsorption characteristics within shorter time frames (e.g., within 24 h). This work compared the adsorption characteristics of As(III) on three synthesized SCHs under various environmental conditions. The adsorption of As(III) by M-SCH (SCH synthesized by KMnO4 oxidation method) and Y-SCH (SCH synthesized by ethanol modification method) were governed by physical adsorption, while that of H-SCH (SCH synthesized by H2O2 oxidation method) was dominated by chemisorption. Acidity, selected ions (NO3-, Ca2+, CO32-, and PO43-), fulvic acid (FA), and Sb(III) adversely impacted the As(III) adsorption by SCHs. Furthermore, alkalinity, selected ions and FA induced the phase transformation of SCHs to iron hydroxide, while no transformation was observed in the presence of Sb(III) and Cr(VI). The iron hydroxide observed in this study is presumed to represent an intermediate stage in the transformation of SCH into goethite. These findings enhance our comprehension of the transformation process of SCH to goethite and provide scientific insights for SCH utilization in immobilizing As(III) in water.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.