Sources and health risk of metallic elements assessment: a study of a representative industrial city.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2025-03-20 DOI:10.1007/s10653-025-02440-w
Jinfeng Xiao, Yongchao Sun, Jianjiang Lu, Li Cao, Zilong Liu, Yujun Yan, Weijun Li, Shaohua He
{"title":"Sources and health risk of metallic elements assessment: a study of a representative industrial city.","authors":"Jinfeng Xiao, Yongchao Sun, Jianjiang Lu, Li Cao, Zilong Liu, Yujun Yan, Weijun Li, Shaohua He","doi":"10.1007/s10653-025-02440-w","DOIUrl":null,"url":null,"abstract":"<p><p>PM<sub>2.5</sub> in the air can adsorb a wide range of substances, and due to their small size, they can carry toxic and hazardous substances into the human body through inhalation, which can be harmful to human health. PM<sub>2.5</sub> samples were collected in Shihezi for one year from September 2021 to August 2022 to characterise the distribution of 13 metallic elements in PM<sub>2.5</sub> and their potential sources. The findings revealed that the concentrations of PM<sub>2.5</sub> surpassed the national threshold of 35 μg/m<sup>3</sup>, alongside elevated levels of crustal elements. To assess the potential sources of the 13 metallic elements, present in PM<sub>2.5</sub>, a comprehensive analysis was conducted utilizing Enrichment Factor analysis, principal component analysis (PCA), and Backward Trajectory Modelling. The Enrichment Factors analysis revealed that five elements were significantly influenced by anthropogenic activities, with cadmium exhibiting particularly high levels of enrichment. PCA indicated that the metal elements were predominantly sourced from coal combustion, vehicular emissions, dust, fossil fuel combustion and industrial activities. Backward trajectory cluster analysis demonstrated that pollutant concentrations are substantially affected by both long-range transport mechanisms and localized anthropogenic sources. The assessment of health risks associated with metallic elements suggests a low risk to human health. These findings offer a crucial scientific foundation for air pollution management strategies in the SHZ region.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 4","pages":"125"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02440-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

PM2.5 in the air can adsorb a wide range of substances, and due to their small size, they can carry toxic and hazardous substances into the human body through inhalation, which can be harmful to human health. PM2.5 samples were collected in Shihezi for one year from September 2021 to August 2022 to characterise the distribution of 13 metallic elements in PM2.5 and their potential sources. The findings revealed that the concentrations of PM2.5 surpassed the national threshold of 35 μg/m3, alongside elevated levels of crustal elements. To assess the potential sources of the 13 metallic elements, present in PM2.5, a comprehensive analysis was conducted utilizing Enrichment Factor analysis, principal component analysis (PCA), and Backward Trajectory Modelling. The Enrichment Factors analysis revealed that five elements were significantly influenced by anthropogenic activities, with cadmium exhibiting particularly high levels of enrichment. PCA indicated that the metal elements were predominantly sourced from coal combustion, vehicular emissions, dust, fossil fuel combustion and industrial activities. Backward trajectory cluster analysis demonstrated that pollutant concentrations are substantially affected by both long-range transport mechanisms and localized anthropogenic sources. The assessment of health risks associated with metallic elements suggests a low risk to human health. These findings offer a crucial scientific foundation for air pollution management strategies in the SHZ region.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Depression, Anxiety, and Cognitive Impairment : Comorbid Mental Health Disorders in Heart Failure.
IF 0 Current Heart Failure ReportsPub Date : 2018-12-01 DOI: 10.1007/s11897-018-0414-8
Christiane E Angermann, Georg Ertl
Mental health literacy of Indonesian health practitioners and implications for mental health system development
IF 9.5 4区 医学Asian journal of psychiatryPub Date : 2020-12-01 DOI: 10.1016/j.ajp.2020.102168
Nurul F. Praharso , Hans Pols , Nikolaos Tiliopoulos
Factors Associated With Mental Health Literacy, Depression, and Anxiety Amongst Indonesian Adolescents
IF 3.8 3区 医学Journal of Advanced NursingPub Date : 2025-01-10 DOI: 10.1111/jan.16742
Desy Indra Yani, John Chee Meng Wong, Minna Pikkarainen, Joelle Yan Xin Chua, Hung Chew Wong, Yong Shian Shawn Goh, Shefaly Shorey
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Repercussions of anthropogenic activities on soil contamination: sources, distribution, and health risks of arsenic and other non-radioactive metals in urban Bangladesh. Adsorption of As(III) to schwertmannite: impact factors and phase transformation. Biochar and sodium carboxymethyl cellulose (CMC) improve the soil matrix for treating highway rainwater runoff. Changes in electron distribution of aged microplastic and their environmental impacts in aquatic environments. Provenance and distribution of potentially toxic elements (PTEs) in stream sediments from the eastern Hg-district of Mt. Amiata (central Italy).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1