An experimental investigation of the impacts of titanium dioxide (TiO2) and ethanol on performance and emission characteristics on diesel engines run with castor Biodiesel ethanol blended fuel
{"title":"An experimental investigation of the impacts of titanium dioxide (TiO2) and ethanol on performance and emission characteristics on diesel engines run with castor Biodiesel ethanol blended fuel","authors":"Dinku Seyoum Zeleke, Addisu Kassahun Tefera","doi":"10.1016/j.fuproc.2024.108137","DOIUrl":null,"url":null,"abstract":"<div><div>Investigating the impact of ethanol and TiO2 on the performance and emission characteristics of diesel engines running on a blend of ethanol and castor biodiesel is the primary goal of this study. The nanoparticles of ethanol, biodiesel, and TiO2 diesel fuel were combined at several concentrations. Diesel, B10, B20, B30, B10E10T, B20E10T, B30E10T, B10E20T, B20E20T, and B30E20T were among the various fuels that were investigated. The physiochemical properties of all the sample fuels were assessed, including density, pour point, cloud point, fire point, flash point, and kinematic viscosity. Following this, other engine performance indicators, such as torque, power, and fuel-consumption, were examined. Studies were also carried out on the properties of emissions, including CO, CO2, HC, and NO. Peak braking power and engine torque were found for each fuel under investigation at around 2750 and 2500 rpm, respectively. The addition reduced the brake-specific fuel consumption for B10E20T by 7.41 % while increasing the braking engine's torque and power by 8.64 and 3.86 %, respectively, in compared to blends without the TiO2 additions. When compared to diesel, the exhaust emission data without the addition of TiO2 revealed a decrease in CO and HC emissions but an increase in CO2 and NO emissions. On the other hand, using ethanol blend reduced NO emissions. According to the overall findings, diesel engine performance, combustion characteristics, and exhaust gas emissions were enhanced averagely by 7.43 % when a certain ratio of ethanol, biodiesel, and TiO2 additives (B10E20 + 50 ppm) was used.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"264 ","pages":"Article 108137"},"PeriodicalIF":7.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024001073/pdfft?md5=6df56c01774883acd9970b90aabcacfd&pid=1-s2.0-S0378382024001073-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024001073","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating the impact of ethanol and TiO2 on the performance and emission characteristics of diesel engines running on a blend of ethanol and castor biodiesel is the primary goal of this study. The nanoparticles of ethanol, biodiesel, and TiO2 diesel fuel were combined at several concentrations. Diesel, B10, B20, B30, B10E10T, B20E10T, B30E10T, B10E20T, B20E20T, and B30E20T were among the various fuels that were investigated. The physiochemical properties of all the sample fuels were assessed, including density, pour point, cloud point, fire point, flash point, and kinematic viscosity. Following this, other engine performance indicators, such as torque, power, and fuel-consumption, were examined. Studies were also carried out on the properties of emissions, including CO, CO2, HC, and NO. Peak braking power and engine torque were found for each fuel under investigation at around 2750 and 2500 rpm, respectively. The addition reduced the brake-specific fuel consumption for B10E20T by 7.41 % while increasing the braking engine's torque and power by 8.64 and 3.86 %, respectively, in compared to blends without the TiO2 additions. When compared to diesel, the exhaust emission data without the addition of TiO2 revealed a decrease in CO and HC emissions but an increase in CO2 and NO emissions. On the other hand, using ethanol blend reduced NO emissions. According to the overall findings, diesel engine performance, combustion characteristics, and exhaust gas emissions were enhanced averagely by 7.43 % when a certain ratio of ethanol, biodiesel, and TiO2 additives (B10E20 + 50 ppm) was used.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.