{"title":"Interannual variation of summer southwest monsoon rainfall over the monsoon core regions of the eastern Bay of Bengal and its relationship with oceans","authors":"Kyaw Than Oo , Kazora Jonah","doi":"10.1016/j.jastp.2024.106341","DOIUrl":null,"url":null,"abstract":"<div><div>The study looked at how summer monsoon rainfall in the eastern Bay of Bengal area changes from year to year due to Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Study used rainfall data and sea surface temperature data to see these variations. It's found that during ENSO positive phase, rainfall decreased in the eastern coastal region of the Bay of Bengal but increased in the northern Indo-Myanmar region. The opposite happened during ENSO negative phase. The study used a special analysis method called EOF and Morlet wavelet power-spectrum analysis to look for important patterns in the rainfall data and did correlation analysis to understand what causes abnormal rainfall in these regions. The study also found that the local convection and water vapor flux during ENSO positive phase are related to the anomalous rainfall in the Monsoon Core region. Rainfall is made stronger by the unusual anticyclone circulation in the upper troposphere. A strong/weak Mainland Indochina southwest monsoon (MSwM) in the positive or negative phase of ENSO can bring excess/less moisture to wet/dry the local southwest summer rainfall. In northern Indo-Myanmar, the anomalous rainfall is not only relied on the intensity of the MSwM but also the frequency of western disturbances also influences the regional rainfall, and further study need to develop.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"265 ","pages":"Article 106341"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136468262400169X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The study looked at how summer monsoon rainfall in the eastern Bay of Bengal area changes from year to year due to Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Study used rainfall data and sea surface temperature data to see these variations. It's found that during ENSO positive phase, rainfall decreased in the eastern coastal region of the Bay of Bengal but increased in the northern Indo-Myanmar region. The opposite happened during ENSO negative phase. The study used a special analysis method called EOF and Morlet wavelet power-spectrum analysis to look for important patterns in the rainfall data and did correlation analysis to understand what causes abnormal rainfall in these regions. The study also found that the local convection and water vapor flux during ENSO positive phase are related to the anomalous rainfall in the Monsoon Core region. Rainfall is made stronger by the unusual anticyclone circulation in the upper troposphere. A strong/weak Mainland Indochina southwest monsoon (MSwM) in the positive or negative phase of ENSO can bring excess/less moisture to wet/dry the local southwest summer rainfall. In northern Indo-Myanmar, the anomalous rainfall is not only relied on the intensity of the MSwM but also the frequency of western disturbances also influences the regional rainfall, and further study need to develop.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.