A skeletonization-based approach for individual fiber separation in tomography images of biocomposites

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-09-20 DOI:10.1016/j.commatsci.2024.113372
Tuukka Verho, Tuomas Turpeinen, Faizan Asad, Kirsi Immonen
{"title":"A skeletonization-based approach for individual fiber separation in tomography images of biocomposites","authors":"Tuukka Verho,&nbsp;Tuomas Turpeinen,&nbsp;Faizan Asad,&nbsp;Kirsi Immonen","doi":"10.1016/j.commatsci.2024.113372","DOIUrl":null,"url":null,"abstract":"<div><div>The separation individual fibers is a persistent challenge in analyzing fiber composites and fibrous materials with X-ray microtomography. A variety of approaches have been published, but they generally work poorly for heterogeneous fibers with varying cross sections, orientations, lengths and shapes. We present a skeletonization-based method that can separate highly curled and heterogeneous pulp fibers in biocomposites with thickness close to the resolution limit. Optical pulp analysis for fibers extracted from the composites is used as a reference. We show that while the mean length is underestimated by our method, the shape features are better analyzed than in the reference method as fibers are not extracted or swollen in water. Our analysis reveals that the shape factor and orientation of fibers have power law dependencies on fiber length. The fiber separation and analysis method can be used as a basis for numerical modeling of the materials.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927025624005937/pdfft?md5=923b13374a58bcea59bd39ad2f2d9f00&pid=1-s2.0-S0927025624005937-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005937","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The separation individual fibers is a persistent challenge in analyzing fiber composites and fibrous materials with X-ray microtomography. A variety of approaches have been published, but they generally work poorly for heterogeneous fibers with varying cross sections, orientations, lengths and shapes. We present a skeletonization-based method that can separate highly curled and heterogeneous pulp fibers in biocomposites with thickness close to the resolution limit. Optical pulp analysis for fibers extracted from the composites is used as a reference. We show that while the mean length is underestimated by our method, the shape features are better analyzed than in the reference method as fibers are not extracted or swollen in water. Our analysis reveals that the shape factor and orientation of fibers have power law dependencies on fiber length. The fiber separation and analysis method can be used as a basis for numerical modeling of the materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在生物复合材料断层扫描图像中分离单个纤维的骨架化方法
在使用 X 射线显微层析成像技术分析纤维复合材料和纤维材料时,分离单个纤维是一个长期存在的难题。目前已发表了多种方法,但对于横截面、取向、长度和形状各异的异质纤维,这些方法通常效果不佳。我们提出了一种基于骨架化的方法,可以分离生物复合材料中高度卷曲和异质的纸浆纤维,其厚度接近分辨率极限。从复合材料中提取的纤维的光学纸浆分析被用作参考。我们的结果表明,虽然我们的方法低估了平均长度,但由于纤维未被提取或在水中膨胀,因此与参考方法相比,我们能更好地分析纤维的形状特征。我们的分析表明,纤维的形状因子和取向与纤维长度呈幂律关系。纤维分离和分析方法可作为材料数值建模的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Nanodroplet bouncing behaviors of bonded graphene-carbon nanotube hybrid film Atomistic simulation and machine learning predictions of mechanical response in nanotube-polymer composites considering filler morphology and aggregation High throughput screening of new piezoelectric materials using graph machine learning and knowledge graph approach MicroSim: A high-performance phase-field solver based on CPU and GPU implementations Introducing Materials Fingerprint (MatPrint): A novel method in graphical material representation and features compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1