Multi-fidelity surrogate with heterogeneous input spaces for modeling melt pools in laser-directed energy deposition

IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Additive manufacturing Pub Date : 2024-08-25 DOI:10.1016/j.addma.2024.104440
Nandana Menon, Amrita Basak
{"title":"Multi-fidelity surrogate with heterogeneous input spaces for modeling melt pools in laser-directed energy deposition","authors":"Nandana Menon,&nbsp;Amrita Basak","doi":"10.1016/j.addma.2024.104440","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-fidelity (MF) modeling is a powerful statistical approach that can intelligently blend data from varied fidelity sources. This approach finds a compelling application in predicting melt pool geometry for laser-directed energy deposition (L-DED). One major challenge in using MF surrogates to merge a hierarchy of melt pool models is the variability in input spaces. To address this challenge, this paper introduces a novel approach for constructing an MF surrogate for predicting melt pool geometry by integrating models of varying complexity, that operate on heterogeneous input spaces. The first thermal model incorporates five input parameters i.e., laser power, scan velocity, powder flow rate, carrier gas flow rate, and nozzle height. In contrast, the second thermal model can only handle laser power and scan velocity. A mapping is established between the heterogeneous input spaces so that the five-dimensional space can be morphed into a pseudo two-dimensional space. Predictions are then blended using a Gaussian process-based co-kriging method. The resulting heterogeneous multi-fidelity Gaussian process (Het-MFGP) surrogate not only improves predictive accuracy but also offers computational efficiency by reducing evaluations required from the high-dimensional, high-fidelity thermal model. The tested Het-MFGP yields an <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.975 for predicting melt pool depth. This surpasses the comparatively modest <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.592 achieved by a GP trained exclusively on high-dimensional, high-fidelity data. Similarly, in the prediction of melt pool width, the Het-MFGP excels with an <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.943, outshining the GP's performance, which registers a lower <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.588. The results underscore the benefits of employing Het-MFGP for modeling melt pool behavior in L-DED. The framework successfully demonstrates how to leverage multimodal data and handle scenarios where certain input parameters may be difficult to model or measure.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104440"},"PeriodicalIF":10.3000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221486042400486X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-fidelity (MF) modeling is a powerful statistical approach that can intelligently blend data from varied fidelity sources. This approach finds a compelling application in predicting melt pool geometry for laser-directed energy deposition (L-DED). One major challenge in using MF surrogates to merge a hierarchy of melt pool models is the variability in input spaces. To address this challenge, this paper introduces a novel approach for constructing an MF surrogate for predicting melt pool geometry by integrating models of varying complexity, that operate on heterogeneous input spaces. The first thermal model incorporates five input parameters i.e., laser power, scan velocity, powder flow rate, carrier gas flow rate, and nozzle height. In contrast, the second thermal model can only handle laser power and scan velocity. A mapping is established between the heterogeneous input spaces so that the five-dimensional space can be morphed into a pseudo two-dimensional space. Predictions are then blended using a Gaussian process-based co-kriging method. The resulting heterogeneous multi-fidelity Gaussian process (Het-MFGP) surrogate not only improves predictive accuracy but also offers computational efficiency by reducing evaluations required from the high-dimensional, high-fidelity thermal model. The tested Het-MFGP yields an R2 of 0.975 for predicting melt pool depth. This surpasses the comparatively modest R2 of 0.592 achieved by a GP trained exclusively on high-dimensional, high-fidelity data. Similarly, in the prediction of melt pool width, the Het-MFGP excels with an R2 of 0.943, outshining the GP's performance, which registers a lower R2 of 0.588. The results underscore the benefits of employing Het-MFGP for modeling melt pool behavior in L-DED. The framework successfully demonstrates how to leverage multimodal data and handle scenarios where certain input parameters may be difficult to model or measure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用异质输入空间的多保真度替代物,为激光引导能量沉积过程中的熔池建模
多保真度(MF)建模是一种强大的统计方法,可以智能地混合来自不同保真度来源的数据。这种方法在预测激光直接能量沉积 (L-DED) 的熔池几何形状方面有着引人注目的应用。使用 MF 代理来合并熔池模型层次的一个主要挑战是输入空间的可变性。为了应对这一挑战,本文介绍了一种新颖的方法,通过整合不同复杂度的模型,构建用于预测熔池几何形状的 MF 代理,这些模型在不同的输入空间中运行。第一个热模型包含五个输入参数,即激光功率、扫描速度、粉末流速、载气流速和喷嘴高度。相比之下,第二个热模型只能处理激光功率和扫描速度。在异构输入空间之间建立映射,从而将五维空间变形为伪二维空间。然后使用基于高斯过程的共轭方法对预测结果进行混合。由此产生的异构多保真度高斯过程(Het-MFGP)代理不仅提高了预测精度,还通过减少高维高保真热模型所需的评估来提高计算效率。测试的 Het-MFGP 预测熔池深度的 R2 值为 0.975。这超过了完全基于高维、高保真数据训练的 GP 所达到的相对较低的 R2(0.592)。同样,在预测熔池宽度时,Het-MFGP 的 R2 值为 0.943,超过了 GP 的表现,后者的 R2 值为 0.588。这些结果凸显了采用 Het-MFGP 对 L-DED 中的熔池行为进行建模的优势。该框架成功展示了如何利用多模态数据和处理某些输入参数可能难以建模或测量的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
期刊最新文献
Multifunctional seamless meta-sandwich composite as lightweight, load-bearing, and broadband-electromagnetic-wave-absorbing structure 3D printing of lignin-based supramolecular topological shape-morphing architectures with high strength, toughness, resolution, and fatigue resistance Fabrication of customized microneedle with high 3D capability and high structural precision Scalability enhancement in projection-based 3D printing through optical expansion Enhancing thermal conductivity of AlN ceramics via vat photopolymerization through refractive index coupling and oxygen fixation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1