Dianzheng Wang, Kailun Li, Jun Yao, Baorui Du, Yuchen Xu
{"title":"Porosity, texture, and mechanical properties of pure copper fabricated by fine green laser powder bed fusion","authors":"Dianzheng Wang, Kailun Li, Jun Yao, Baorui Du, Yuchen Xu","doi":"10.1016/j.optlastec.2024.112009","DOIUrl":null,"url":null,"abstract":"<div><div>Previously, the additive manufacturing of pure copper was carried out using a large-spot (0.2 mm) infrared or green laser. In this study, the laser powder bed fusion (LPBF) of pure copper using a green laser with a 532 nm wavelength and a fine spot (40 μm) was investigated. After the optimization of the process parameters, pure copper blocks with a maximum density of 99.6 % were prepared. Using micro-CT, three porosity defects that affect the densification and tensile properties of pure copper were identified, namely lack-of-fusion, keyhole, and small-hole porosities. An obvious < 110 > texture in the build direction was observed in the fabricated pure copper blocks. Anisotropy of the mechanical properties was found and can be attributed to the interaction between the textures and porosities during the tensile process.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 112009"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224014671","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Previously, the additive manufacturing of pure copper was carried out using a large-spot (0.2 mm) infrared or green laser. In this study, the laser powder bed fusion (LPBF) of pure copper using a green laser with a 532 nm wavelength and a fine spot (40 μm) was investigated. After the optimization of the process parameters, pure copper blocks with a maximum density of 99.6 % were prepared. Using micro-CT, three porosity defects that affect the densification and tensile properties of pure copper were identified, namely lack-of-fusion, keyhole, and small-hole porosities. An obvious < 110 > texture in the build direction was observed in the fabricated pure copper blocks. Anisotropy of the mechanical properties was found and can be attributed to the interaction between the textures and porosities during the tensile process.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems