Photoresponsive conductive polymer network based on azobenzene bridging crosslinked polycarbazole for boosting solar thermal storage

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-09-27 DOI:10.1016/j.solmat.2024.113184
Seda Sert , Rukiye Ayranci , Gülbanu Koyundereli Çılgı , Metin Ak
{"title":"Photoresponsive conductive polymer network based on azobenzene bridging crosslinked polycarbazole for boosting solar thermal storage","authors":"Seda Sert ,&nbsp;Rukiye Ayranci ,&nbsp;Gülbanu Koyundereli Çılgı ,&nbsp;Metin Ak","doi":"10.1016/j.solmat.2024.113184","DOIUrl":null,"url":null,"abstract":"<div><div>Azobenzene is one of the most extensively researched multifunctional chromophores and azobenzene including materials has a wide variety of applications due to their photoisomerization behavior. In this study, electroactive and light-harvesting carbazole and photoresponsive azobenzene units have been combined with a special macromolecular design. In this design the azo groups can be effectively isomerized in solid state, and free-standing films can be obtained by the electrochemical method. Thermal characterizations of both monomer and polymer have been performed and isomerization kinetics and solar-thermal properties have been investigated. The half-life at 60 °C and the gravimetric energy storage density of polymer was calculated as 103 min and 179.9 j g<sup>−1</sup>, respectively. Cross-linked polycarbazole structure causes dramatically increased solar thermal storage and half-life compared to respective monomer and brought unexpected mechanical and solvatochromic properties.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113184"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824004963","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Azobenzene is one of the most extensively researched multifunctional chromophores and azobenzene including materials has a wide variety of applications due to their photoisomerization behavior. In this study, electroactive and light-harvesting carbazole and photoresponsive azobenzene units have been combined with a special macromolecular design. In this design the azo groups can be effectively isomerized in solid state, and free-standing films can be obtained by the electrochemical method. Thermal characterizations of both monomer and polymer have been performed and isomerization kinetics and solar-thermal properties have been investigated. The half-life at 60 °C and the gravimetric energy storage density of polymer was calculated as 103 min and 179.9 j g−1, respectively. Cross-linked polycarbazole structure causes dramatically increased solar thermal storage and half-life compared to respective monomer and brought unexpected mechanical and solvatochromic properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于偶氮苯桥接交联聚咔唑的光致伸缩导电聚合物网络,用于促进太阳能热存储
偶氮苯是研究最为广泛的多功能发色团之一,由于其光异构化行为,包括偶氮苯在内的材料具有广泛的应用。在这项研究中,一种特殊的大分子设计将具有电活性和光收集功能的咔唑和具有光致伸缩性的偶氮苯单元结合在一起。在这种设计中,偶氮基团可在固态下有效异构,并可通过电化学方法获得独立薄膜。研究人员对单体和聚合物进行了热特性分析,并研究了异构化动力学和日热特性。计算得出聚合物在 60 °C 时的半衰期为 103 分钟,重量储能密度为 179.9 j g-1。与各自的单体相比,交联聚咔唑结构大大提高了太阳能热储存和半衰期,并带来了意想不到的机械和溶解变色特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Oxide-nitride nanolayer stacks for enhanced passivation of p-type surfaces in silicon solar cells Accurately quantifying the recombination pathways unique in back contact solar cells Analyzing the effectiveness of various coatings to mitigate photovoltaic modules soiling in desert climate Solar energy harvester based on polarization insensitive and wide angle stable UWB absorber for UV, visible and IR frequency range Experimental evaluation of photovoltaic thermal (PVT) system using a modular heat collector with flat back shape fins, pipe, nanofluids and phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1