Ute Schweiggert-Weisz, Lara Etzbach, Susanne Gola, Sabine E. Kulling, Christina Diekmann, Sarah Egert, Hannelore Daniel
{"title":"Opinion Piece: New Plant-Based Food Products Between Technology and Physiology","authors":"Ute Schweiggert-Weisz, Lara Etzbach, Susanne Gola, Sabine E. Kulling, Christina Diekmann, Sarah Egert, Hannelore Daniel","doi":"10.1002/mnfr.202400376","DOIUrl":null,"url":null,"abstract":"<p>The rapid growth of product sectors for plant-based meat and dairy alternatives has raised significant scientific interest in their nutritional and ecological benefits. Here, it outlines the fractionation of plant-based raw materials and describes the technologies applied in the production of meat and dairy substitutes. Moreover, the study describes the effects of these new products on human nutrient supply and metabolic responses. Examples of meat-like products produced by extrusion technology and dairy alternatives are provided, addressing production challenges and the effects of processing on nutrient digestibility and bioavailability. In contrast to animal-based products, plant-based protein ingredients can contain many compounds produced by plants for defense or symbiotic interactions, such as lectins, phytates, and a wide range of secondary metabolites. The intake of these compounds as part of a plant-based diet can influence the digestion, bioaccessibility, and bioavailability of essential nutrients such as minerals and trace elements but also of amino acids. This is a critical factor, especially in regions with limited plant species for human consumption and inadequate technologies to eliminate these compounds. To fully understand these impacts and ensure that plant-based diets meet human nutritional needs, well-controlled human studies are needed.</p>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 20","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400376","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400376","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth of product sectors for plant-based meat and dairy alternatives has raised significant scientific interest in their nutritional and ecological benefits. Here, it outlines the fractionation of plant-based raw materials and describes the technologies applied in the production of meat and dairy substitutes. Moreover, the study describes the effects of these new products on human nutrient supply and metabolic responses. Examples of meat-like products produced by extrusion technology and dairy alternatives are provided, addressing production challenges and the effects of processing on nutrient digestibility and bioavailability. In contrast to animal-based products, plant-based protein ingredients can contain many compounds produced by plants for defense or symbiotic interactions, such as lectins, phytates, and a wide range of secondary metabolites. The intake of these compounds as part of a plant-based diet can influence the digestion, bioaccessibility, and bioavailability of essential nutrients such as minerals and trace elements but also of amino acids. This is a critical factor, especially in regions with limited plant species for human consumption and inadequate technologies to eliminate these compounds. To fully understand these impacts and ensure that plant-based diets meet human nutritional needs, well-controlled human studies are needed.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.