The Inhibitory Effects of the Natural Stilbene Piceatannol on Lactate Transport In Vitro Mediated by Monocarboxylate Transporters

IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Molecular Nutrition & Food Research Pub Date : 2024-09-29 DOI:10.1002/mnfr.202400414
Andrés P. Ibacache-Chía, Jimena A. Sierralta, Andreas Schüller
{"title":"The Inhibitory Effects of the Natural Stilbene Piceatannol on Lactate Transport In Vitro Mediated by Monocarboxylate Transporters","authors":"Andrés P. Ibacache-Chía,&nbsp;Jimena A. Sierralta,&nbsp;Andreas Schüller","doi":"10.1002/mnfr.202400414","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Scope</h3>\n \n <p>Lactate, a signaling molecule and energy source, crosses membranes through monocarboxylate transporters (MCTs). MCT1 and MCT4 are potential cancer drug targets due to their role in metabolic reprogramming of cancer cells. Stilbenes, plant secondary metabolites found in several food sources, have anticancer effects, though their mechanisms of action are not well understood. This study links the anticancer activity of natural stilbenes to tumor cell lactate metabolism.</p>\n </section>\n \n <section>\n \n <h3> Methods and results</h3>\n \n <p>The impact of resveratrol, pinostilbene, pterostilbene, rhapontigenin, and piceatannol on lactate transport is studied using a fluorescence resonance energy transfer (FRET)-based lactate sensor. The viability and migration of cells expressing MCT1 or MCT4 are also evaluated. Piceatannol inhibits MCT1 effectively at low micromolar concentrations, with less effect on MCT4. All stilbenes significantly reduce cell viability and migration.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>These findings indicate that both MCTs are stilbene targets, with piceatannol highlighted as a cost-effective, low-toxicity compound for studying MCTs in cancer, providing a new mechanism of action of the therapeutic and nutraceutical effects of natural polyphenols. This enriches the understanding of dietary polyphenols in cancer prevention and therapy.</p>\n </section>\n </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 20","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400414","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Scope

Lactate, a signaling molecule and energy source, crosses membranes through monocarboxylate transporters (MCTs). MCT1 and MCT4 are potential cancer drug targets due to their role in metabolic reprogramming of cancer cells. Stilbenes, plant secondary metabolites found in several food sources, have anticancer effects, though their mechanisms of action are not well understood. This study links the anticancer activity of natural stilbenes to tumor cell lactate metabolism.

Methods and results

The impact of resveratrol, pinostilbene, pterostilbene, rhapontigenin, and piceatannol on lactate transport is studied using a fluorescence resonance energy transfer (FRET)-based lactate sensor. The viability and migration of cells expressing MCT1 or MCT4 are also evaluated. Piceatannol inhibits MCT1 effectively at low micromolar concentrations, with less effect on MCT4. All stilbenes significantly reduce cell viability and migration.

Conclusions

These findings indicate that both MCTs are stilbene targets, with piceatannol highlighted as a cost-effective, low-toxicity compound for studying MCTs in cancer, providing a new mechanism of action of the therapeutic and nutraceutical effects of natural polyphenols. This enriches the understanding of dietary polyphenols in cancer prevention and therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天然二苯乙烯皮夏单宁对单羧酸盐转运体介导的体外乳酸盐转运的抑制作用
乳酸盐是一种信号分子和能量来源,通过单羧酸盐转运体(MCTs)穿过细胞膜。MCT1 和 MCT4 是潜在的抗癌药物靶点,因为它们在癌细胞的代谢重编程中发挥作用。二苯乙烯是存在于多种食物中的植物次生代谢产物,具有抗癌作用,但其作用机制尚不十分清楚。这项研究将天然二苯乙烯类化合物的抗癌活性与肿瘤细胞的乳酸代谢联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Nutrition & Food Research
Molecular Nutrition & Food Research 工程技术-食品科技
CiteScore
8.70
自引率
1.90%
发文量
250
审稿时长
1.7 months
期刊介绍: Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines: Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics. Immunology: Understanding the interactions of food and the immune system. Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes. Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.
期刊最新文献
Investigation of Potential Food Intake Biomarkers by LC‐MS/MS: Suitability Under Conditions Close to Everyday Live Possible Involvement of Hippocampal miR-539-3p/Lrp6/Igf1r Axis for Diminished Working Memory in Mice Fed a Low-Carbohydrate and High-Protein Diet EPA/DHA but Not ALA Reduces Visceral Adiposity and Adipocyte Size in High Fat Diet-Induced Obese Delta-6 Desaturase Knockout Mice The Neuroprotective Effect of Rooibos Herbal Tea Against Alzheimer's Disease: A Review Serum Lipidomic Signatures Mediate the Association Between Coarse Grain Preference and Central Obesity in Adults With Normal Weight and High Wheat Intake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1