Multi-sensor fusion for biomechanical analysis: evaluation of dynamic interactions between self-contained breathing apparatus and firefighter using computational methods.

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Methods in Biomechanics and Biomedical Engineering Pub Date : 2024-09-29 DOI:10.1080/10255842.2024.2410222
Bing Xie, Junxia Zhang
{"title":"Multi-sensor fusion for biomechanical analysis: evaluation of dynamic interactions between self-contained breathing apparatus and firefighter using computational methods.","authors":"Bing Xie, Junxia Zhang","doi":"10.1080/10255842.2024.2410222","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the complex three-dimensional (3D) dynamic interactions between self-contained breathing apparatus (SCBA) and the human torso is critical to assessing potential impacts on firefighter health and informing equipment design. This study employed a multi-inertial sensor fusion technology to quantify these interactions. Six volunteer firefighters performed walking and running experiments on a treadmill while wearing the SCBA. Calculations of interaction forces and moments from the multi-inertial sensor technology were validated against a 3D motion capture system. The predicted interaction forces and moments showed good agreement with the measured data, especially for the forces (normal and lateral) and moments (x- and z-direction components) with relative root mean square errors (RMSEs) below 9.4%, 7.7%, 7.7%, and 7.8%, respectively. Peak pack force reached up to 150 N, significantly exceeding the SCBA's intrinsic weight during SCBA carriage. The proposed multi-inertial sensor fusion technique can effectively evaluate the 3D dynamic interactions and provide a scientific basis for health monitoring and ergonomic optimization of SCBA systems for firefighters.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2410222","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the complex three-dimensional (3D) dynamic interactions between self-contained breathing apparatus (SCBA) and the human torso is critical to assessing potential impacts on firefighter health and informing equipment design. This study employed a multi-inertial sensor fusion technology to quantify these interactions. Six volunteer firefighters performed walking and running experiments on a treadmill while wearing the SCBA. Calculations of interaction forces and moments from the multi-inertial sensor technology were validated against a 3D motion capture system. The predicted interaction forces and moments showed good agreement with the measured data, especially for the forces (normal and lateral) and moments (x- and z-direction components) with relative root mean square errors (RMSEs) below 9.4%, 7.7%, 7.7%, and 7.8%, respectively. Peak pack force reached up to 150 N, significantly exceeding the SCBA's intrinsic weight during SCBA carriage. The proposed multi-inertial sensor fusion technique can effectively evaluate the 3D dynamic interactions and provide a scientific basis for health monitoring and ergonomic optimization of SCBA systems for firefighters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物力学分析的多传感器融合:利用计算方法评估自给式呼吸器与消防员之间的动态交互作用。
了解自给式呼吸器(SCBA)与人体躯干之间复杂的三维(3D)动态交互作用对于评估对消防员健康的潜在影响和指导设备设计至关重要。本研究采用多惯性传感器融合技术来量化这些相互作用。六名志愿消防员佩戴 SCBA 在跑步机上进行了步行和跑步实验。多惯性传感器技术对相互作用力和力矩的计算与三维运动捕捉系统进行了验证。预测的相互作用力和力矩与测量数据显示出良好的一致性,尤其是力(法向和侧向)和力矩(X 和 Z 向分量),相对均方根误差(RMSE)分别低于 9.4%、7.7%、7.7% 和 7.8%。背包的峰值力高达 150 N,大大超过了 SCBA 携带时的固有重量。所提出的多惯性传感器融合技术可有效评估三维动态交互作用,为消防员的健康监测和 SCBA 系统的人体工学优化提供科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
期刊最新文献
Accurate detection of gait events using neural networks and IMU data mimicking real-world smartphone usage. Exploring coronavirus sequence motifs through convolutional neural network for accurate identification of COVID-19. Coexistence of horizontal bone loss and dehiscence with the bundle and conventional fiber post: a finite element analysis. Effects of a soft back exoskeleton on lower lumbar spine loads during manual materials handling: a musculoskeletal modelling study. Mechanical effect of taper position in abutment hole and screw taper angles on implant system and peri-implant tissue: a finite element analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1