Size-Dependent Elemental Composition in Individual Magnetite Nanoparticles Generated from Coal-Fired Power Plant Regulating Their Pulmonary Cytotoxicity.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-11-05 Epub Date: 2024-10-01 DOI:10.1021/acs.est.4c05570
Zhiqiang Shi, Miao Xu, Lingyan Wu, Bo Peng, Xiaojing Yang, Yunqi Zhang, Songda Li, Zuoshun Niu, Hui Zhao, Xinran Ma, Yi Yang
{"title":"Size-Dependent Elemental Composition in Individual Magnetite Nanoparticles Generated from Coal-Fired Power Plant Regulating Their Pulmonary Cytotoxicity.","authors":"Zhiqiang Shi, Miao Xu, Lingyan Wu, Bo Peng, Xiaojing Yang, Yunqi Zhang, Songda Li, Zuoshun Niu, Hui Zhao, Xinran Ma, Yi Yang","doi":"10.1021/acs.est.4c05570","DOIUrl":null,"url":null,"abstract":"<p><p>High-resolution characterization of magnetite nanoparticles (MNPs) derived from coal combustion activities is crucial to better understand their health-related risks. In this study, size distribution and elemental composition of individual MNPs from various coal fly ashes (CFAs) collected from a representative coal-fired power plant were analyzed using a single-particle inductively coupled plasma time-of-flight mass spectrometry technique. Majority (61-80%) of MNPs were identified as multimetal (mm)-MNPs, while the contribution of single metal (sm)-MNPs to the total increased throughout all the CFAs, reaching the highest in fly ash escaped through the stack (EFA). Among Fe-rich MNPs, Fe-sole and Fe-Al matrices were predominant, and Fe-sole MNPs were identified as the important carrier for toxic metals, with the highest mass contributions of toxic metals therein. Toxic potency results showed that the oxidative stress induced by MNPs was 1.2-2.2 times greater than those of <1 μm fractions in CFAs, while the reduction in cell viability showed no significant difference, elucidating that these MNPs can induce more distinct oxidative stress compared to cell toxicity. Based on structural equation model, MNP size can both directly and indirectly regulate the toxic potency, and the indirect regulation is through a size-dependent elemental composition of MNPs, including toxic metals. sm-MNPs and Fe-rich MNPs with Fe-sole, Fe-Cr, and Fe-Zn matrices can regulate the oxidative stress, whereas Cr, Zn, and Pb associated with Fe-sole, Fe-Al, Si-Fe, and Al-Fe MNPs showed significant effects on cell viability.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c05570","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution characterization of magnetite nanoparticles (MNPs) derived from coal combustion activities is crucial to better understand their health-related risks. In this study, size distribution and elemental composition of individual MNPs from various coal fly ashes (CFAs) collected from a representative coal-fired power plant were analyzed using a single-particle inductively coupled plasma time-of-flight mass spectrometry technique. Majority (61-80%) of MNPs were identified as multimetal (mm)-MNPs, while the contribution of single metal (sm)-MNPs to the total increased throughout all the CFAs, reaching the highest in fly ash escaped through the stack (EFA). Among Fe-rich MNPs, Fe-sole and Fe-Al matrices were predominant, and Fe-sole MNPs were identified as the important carrier for toxic metals, with the highest mass contributions of toxic metals therein. Toxic potency results showed that the oxidative stress induced by MNPs was 1.2-2.2 times greater than those of <1 μm fractions in CFAs, while the reduction in cell viability showed no significant difference, elucidating that these MNPs can induce more distinct oxidative stress compared to cell toxicity. Based on structural equation model, MNP size can both directly and indirectly regulate the toxic potency, and the indirect regulation is through a size-dependent elemental composition of MNPs, including toxic metals. sm-MNPs and Fe-rich MNPs with Fe-sole, Fe-Cr, and Fe-Zn matrices can regulate the oxidative stress, whereas Cr, Zn, and Pb associated with Fe-sole, Fe-Al, Si-Fe, and Al-Fe MNPs showed significant effects on cell viability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
燃煤发电厂产生的单个磁铁矿纳米粒子中的元素组成与尺寸有关,可调节其肺部细胞毒性
要更好地了解燃煤活动产生的磁铁矿纳米颗粒(MNPs)对健康的危害,就必须对其进行高分辨率表征。本研究使用单颗粒电感耦合等离子体飞行时间质谱技术分析了从具有代表性的燃煤发电厂收集的各种煤飞灰(CFA)中单个 MNPs 的粒度分布和元素组成。大部分(61-80%)MNPs 被鉴定为多金属 (mm)-MNPs ,而单金属 (sm)-MNPs 在所有 CFAs 中的占比都有所增加,在通过烟囱逸出的飞灰 (EFA) 中占比最高。在富含铁的 MNPs 中,Fe-sole 和 Fe-Al 基质占主导地位,Fe-sole MNPs 被确定为有毒金属的重要载体,其中有毒金属的质量贡献率最高。毒性效力结果表明,MNPs 诱导的氧化应激是其他金属的 1.2-2.2 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
A Planetary Boundary for Mineral, Metal, and Fossil Resource Extraction Rates: How Much Primary Materials Can a Circular Economy Extract? Deep Removal of COS and Hg0 by Carbon Aerogel in Natural Gas: Good Antipoisoning Properties as well as Synergy Effect at Low Temperatures on 0.9PPD-Cu/CA Adsorbent. Dual-Ligand-Driven Dark Reactive Oxygen Species Generation on Iron Oxyhydroxides: Implications for Environmental Remediation. Exposure to and Transplacental Transfer of Per- and Polyfluoroalkyl Substances in a Twin Pregnancy Cohort in Korea. Viewpoint Catalyzing Climate Solutions through Energy and Carbon Education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1