Size-Dependent Elemental Composition in Individual Magnetite Nanoparticles Generated from Coal-Fired Power Plant Regulating Their Pulmonary Cytotoxicity.
Zhiqiang Shi, Miao Xu, Lingyan Wu, Bo Peng, Xiaojing Yang, Yunqi Zhang, Songda Li, Zuoshun Niu, Hui Zhao, Xinran Ma, Yi Yang
{"title":"Size-Dependent Elemental Composition in Individual Magnetite Nanoparticles Generated from Coal-Fired Power Plant Regulating Their Pulmonary Cytotoxicity.","authors":"Zhiqiang Shi, Miao Xu, Lingyan Wu, Bo Peng, Xiaojing Yang, Yunqi Zhang, Songda Li, Zuoshun Niu, Hui Zhao, Xinran Ma, Yi Yang","doi":"10.1021/acs.est.4c05570","DOIUrl":null,"url":null,"abstract":"<p><p>High-resolution characterization of magnetite nanoparticles (MNPs) derived from coal combustion activities is crucial to better understand their health-related risks. In this study, size distribution and elemental composition of individual MNPs from various coal fly ashes (CFAs) collected from a representative coal-fired power plant were analyzed using a single-particle inductively coupled plasma time-of-flight mass spectrometry technique. Majority (61-80%) of MNPs were identified as multimetal (mm)-MNPs, while the contribution of single metal (sm)-MNPs to the total increased throughout all the CFAs, reaching the highest in fly ash escaped through the stack (EFA). Among Fe-rich MNPs, Fe-sole and Fe-Al matrices were predominant, and Fe-sole MNPs were identified as the important carrier for toxic metals, with the highest mass contributions of toxic metals therein. Toxic potency results showed that the oxidative stress induced by MNPs was 1.2-2.2 times greater than those of <1 μm fractions in CFAs, while the reduction in cell viability showed no significant difference, elucidating that these MNPs can induce more distinct oxidative stress compared to cell toxicity. Based on structural equation model, MNP size can both directly and indirectly regulate the toxic potency, and the indirect regulation is through a size-dependent elemental composition of MNPs, including toxic metals. sm-MNPs and Fe-rich MNPs with Fe-sole, Fe-Cr, and Fe-Zn matrices can regulate the oxidative stress, whereas Cr, Zn, and Pb associated with Fe-sole, Fe-Al, Si-Fe, and Al-Fe MNPs showed significant effects on cell viability.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c05570","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-resolution characterization of magnetite nanoparticles (MNPs) derived from coal combustion activities is crucial to better understand their health-related risks. In this study, size distribution and elemental composition of individual MNPs from various coal fly ashes (CFAs) collected from a representative coal-fired power plant were analyzed using a single-particle inductively coupled plasma time-of-flight mass spectrometry technique. Majority (61-80%) of MNPs were identified as multimetal (mm)-MNPs, while the contribution of single metal (sm)-MNPs to the total increased throughout all the CFAs, reaching the highest in fly ash escaped through the stack (EFA). Among Fe-rich MNPs, Fe-sole and Fe-Al matrices were predominant, and Fe-sole MNPs were identified as the important carrier for toxic metals, with the highest mass contributions of toxic metals therein. Toxic potency results showed that the oxidative stress induced by MNPs was 1.2-2.2 times greater than those of <1 μm fractions in CFAs, while the reduction in cell viability showed no significant difference, elucidating that these MNPs can induce more distinct oxidative stress compared to cell toxicity. Based on structural equation model, MNP size can both directly and indirectly regulate the toxic potency, and the indirect regulation is through a size-dependent elemental composition of MNPs, including toxic metals. sm-MNPs and Fe-rich MNPs with Fe-sole, Fe-Cr, and Fe-Zn matrices can regulate the oxidative stress, whereas Cr, Zn, and Pb associated with Fe-sole, Fe-Al, Si-Fe, and Al-Fe MNPs showed significant effects on cell viability.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.