Gwenny Thomassen, Adithya Eswaran, Steven Van Passel, Jo Dewulf
{"title":"A Planetary Boundary for Mineral, Metal, and Fossil Resource Extraction Rates: How Much Primary Materials Can a Circular Economy Extract?","authors":"Gwenny Thomassen, Adithya Eswaran, Steven Van Passel, Jo Dewulf","doi":"10.1021/acs.est.4c08688","DOIUrl":null,"url":null,"abstract":"<p><p>Resource consumption is expected to further increase in the next decades. A circular economy could decrease the environmental impact of this resource consumption by minimizing the primary raw materials consumption and minimizing emissions that render materials inaccessible for further use. However, such a circular economy will still have primary raw material inflows, due to population growth, stock expansion, energy transition, and inevitable dissipation. The potential magnitude of such primary raw material inflows in a circular economy remains unclear. To address this uncertainty, the planetary boundary framework, which defines absolute limits on resource and emission flows, could be utilized. Although this framework incorporates aspects of biomass, water, and land use, mineral, metal, and fossil resources are not included. This study provides a principle for a planetary boundary for these three resources, based on the net accessibility rate and an allocated share of the accessible resource stock in the ecosphere. Inter- and intragenerational equality are crucial for determining this allocated share and for quantifying a sustainable rate of resource extraction in (an economy transitioning toward) a circular economy. Next steps to operationalize this principle provide further guidance to determine the safe operating space for mineral, metal, and fossil resource extraction.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08688","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Resource consumption is expected to further increase in the next decades. A circular economy could decrease the environmental impact of this resource consumption by minimizing the primary raw materials consumption and minimizing emissions that render materials inaccessible for further use. However, such a circular economy will still have primary raw material inflows, due to population growth, stock expansion, energy transition, and inevitable dissipation. The potential magnitude of such primary raw material inflows in a circular economy remains unclear. To address this uncertainty, the planetary boundary framework, which defines absolute limits on resource and emission flows, could be utilized. Although this framework incorporates aspects of biomass, water, and land use, mineral, metal, and fossil resources are not included. This study provides a principle for a planetary boundary for these three resources, based on the net accessibility rate and an allocated share of the accessible resource stock in the ecosphere. Inter- and intragenerational equality are crucial for determining this allocated share and for quantifying a sustainable rate of resource extraction in (an economy transitioning toward) a circular economy. Next steps to operationalize this principle provide further guidance to determine the safe operating space for mineral, metal, and fossil resource extraction.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.