Facia-fix: mobile application for bell's palsy diagnosis and assessment using computer vision and deep learning.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2024-10-09 DOI:10.1088/2057-1976/ad8094
Amira Mohamed, Doha Eid, Mariam M Ezzat, Mayar Ehab, Maye Khaled, Sarah Gaber, Amira Gaber
{"title":"Facia-fix: mobile application for bell's palsy diagnosis and assessment using computer vision and deep learning.","authors":"Amira Mohamed, Doha Eid, Mariam M Ezzat, Mayar Ehab, Maye Khaled, Sarah Gaber, Amira Gaber","doi":"10.1088/2057-1976/ad8094","DOIUrl":null,"url":null,"abstract":"<p><p>Facial paralysis (FP) is a condition characterized by the inability to move some or all of the muscles on one or both sides of the face. Diagnosing FP presents challenges due to the limitations of traditional methods, which are time-consuming, uncomfortable for patients, and require specialized clinicians. Additionally, more advanced tools are often uncommonly available to all healthcare providers. Early and accurate detection of FP is crucial, as timely intervention can prevent long-term complications and improve patient outcomes. To address these challenges, our research introduces Facia-Fix, a mobile application for Bell's palsy diagnosis, integrating computer vision and deep learning techniques to provide real-time analysis of facial landmarks. The classification algorithms are trained on the publicly available YouTube FP (YFP) dataset, which is labeled using the House-Brackmann (HB) method, a standardized system for assessing the severity of FP. Different deep learning models were employed to classify the FP severity, such as MobileNet, CNN, MLP, VGG16, and Vision Transformer. The MobileNet model which uses transfer learning, achieved the highest performance (Accuracy: 0.9812, Precision: 0.9753, Recall: 0.9727, F1 Score: 0.974), establishing it as the optimal choice among the evaluated models. The innovation of this approach lies in its use of advanced deep learning models to provide accurate, objective, non-invasive and real-time comprehensive quantitative assessment of FP severity. Preliminary results highlight the potential of Facia-Fix to significantly improve the diagnostic and follow-up experiences for both clinicians and patients.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad8094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Facial paralysis (FP) is a condition characterized by the inability to move some or all of the muscles on one or both sides of the face. Diagnosing FP presents challenges due to the limitations of traditional methods, which are time-consuming, uncomfortable for patients, and require specialized clinicians. Additionally, more advanced tools are often uncommonly available to all healthcare providers. Early and accurate detection of FP is crucial, as timely intervention can prevent long-term complications and improve patient outcomes. To address these challenges, our research introduces Facia-Fix, a mobile application for Bell's palsy diagnosis, integrating computer vision and deep learning techniques to provide real-time analysis of facial landmarks. The classification algorithms are trained on the publicly available YouTube FP (YFP) dataset, which is labeled using the House-Brackmann (HB) method, a standardized system for assessing the severity of FP. Different deep learning models were employed to classify the FP severity, such as MobileNet, CNN, MLP, VGG16, and Vision Transformer. The MobileNet model which uses transfer learning, achieved the highest performance (Accuracy: 0.9812, Precision: 0.9753, Recall: 0.9727, F1 Score: 0.974), establishing it as the optimal choice among the evaluated models. The innovation of this approach lies in its use of advanced deep learning models to provide accurate, objective, non-invasive and real-time comprehensive quantitative assessment of FP severity. Preliminary results highlight the potential of Facia-Fix to significantly improve the diagnostic and follow-up experiences for both clinicians and patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facia-Fix:利用计算机视觉和深度学习进行贝尔氏麻痹诊断和评估的移动应用程序。
面瘫(FP)是一种以面部一侧或两侧的部分或全部肌肉无法运动为特征的疾病。由于传统方法耗时长、患者感觉不舒服,而且需要专业的临床医生,因此对 FP 进行诊断是一项挑战。此外,所有医疗服务提供者通常都无法获得更先进的工具。早期准确检测 FP 至关重要,因为及时干预可以预防长期并发症,改善患者预后。为了应对这些挑战,我们的研究推出了用于贝尔氏麻痹诊断的移动应用程序 Facia-Fix,该应用程序集成了计算机视觉和深度学习技术,可对面部地标进行实时分析。分类算法是在公开的 YouTube FP(YFP)数据集上进行训练的,该数据集使用 House-Brackmann (HB)方法进行标记,是评估 FP 严重程度的标准化系统。我们采用了不同的深度学习模型来对 FP 的严重程度进行分类,如 MobileNet、CNN、MLP、VGG16 和 Vision Transformer。采用迁移学习的 MobileNet 模型取得了最高的性能(准确率:0.9812;精确度:0.9753;召回率:0.9727;F1 分数:0.974),成为所有评估模型中的最佳选择。这种方法的创新之处在于利用先进的深度学习模型对 FP 的严重程度进行准确、客观、无创和实时的综合量化评估。初步结果凸显了 Facia-Fix 在显著改善临床医生和患者的诊断和随访体验方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Dose compensation for decreased biological effective dose due to intrafractional interruption during radiotherapy: integration with a commercial treatment planning system. Open-window MSR Design with Active Magnetic Compensation Coil based on COMSOL Multiphysics. A new method to assess the performance of anti-scatter grids in x-ray projection imaging. Effect of tissue viscoelasticity on delivered mechanical power in a physical respiratory system model: distinguishing between airway and tissue resistance. Local field potential-based brain-machine interface to inhibit epileptic seizures by spinal cord electrical stimulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1