Dose compensation for decreased biological effective dose due to intrafractional interruption during radiotherapy: integration with a commercial treatment planning system.
{"title":"Dose compensation for decreased biological effective dose due to intrafractional interruption during radiotherapy: integration with a commercial treatment planning system.","authors":"Hikaru Yamaguchi, Daisuke Kawahara, Akito S Koganezawa, Nobuki Imano, Yuji Murakami, Ikuno Nishibuchi, Eiji Shiba, Yasushi Nagata","doi":"10.1088/2057-1976/ad9280","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>While the biological effective dose (BED) has been used to estimate the damage to tumor cells in radiotherapy, BED does not consider intrafractional interruption (IFI) occurring during irradiation. We aim to develop a framework to evaluate the decrease in BED [ΔBED] and to create a plan compensating for the decrease by IFI.<i>Approach.</i>ΔBEDwas calculated using a model based on the microdosimetric kinetic model (MKM) for four brain tumor cases treated using a volumetric-modulated arc therapy. Four biologically compensated plans (BCPs) were created in the treatment planning system by a single-time optimization using a base plan consideringΔBEDcreated in in-house software and optimization objectives for the original clinically delivered plan to achieve a homogeneous BED distribution within the planning target volume (PTV). The BED-volume histogram was evaluated for non-compensated plan and BCP with different timepoint of interruption, a percentage of gantry rotation angle (GRA) before interruption in planned GRA,ηand duration of interruptionτ. Characteristics of the dose accumulation were analyzed for different collimator angle sets, Plan A (10°, 85°) and Plan B (45° and 315°), for the first case.<i>Main Results.</i>Hot spots in theΔBEDdistribution forη= 25%, 50%, and 75% were observed at superior-and-interior ends, central region, and peripheral region in PTV, respectively. These behaviors could be understood by characteristics of the MKM-based model producing maximumΔBEDat 50% of the dose accumulation.ΔBED50%ranged 4.5%-6.6%, 5.0%-7.3%, and 5.3%-7.7% forτ= 60, 90, and 120 min, respectively. Plan A showed fast dose accumulation at superior and inferior edges while slow on peripheries in the lateral dose profile. Plan B showed more homogeneous PD distributions than Plan A during irradiation.<i>Significance.</i>The developed framework successfully evaluated and compensated for the decreased BED distribution.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad9280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.While the biological effective dose (BED) has been used to estimate the damage to tumor cells in radiotherapy, BED does not consider intrafractional interruption (IFI) occurring during irradiation. We aim to develop a framework to evaluate the decrease in BED [ΔBED] and to create a plan compensating for the decrease by IFI.Approach.ΔBEDwas calculated using a model based on the microdosimetric kinetic model (MKM) for four brain tumor cases treated using a volumetric-modulated arc therapy. Four biologically compensated plans (BCPs) were created in the treatment planning system by a single-time optimization using a base plan consideringΔBEDcreated in in-house software and optimization objectives for the original clinically delivered plan to achieve a homogeneous BED distribution within the planning target volume (PTV). The BED-volume histogram was evaluated for non-compensated plan and BCP with different timepoint of interruption, a percentage of gantry rotation angle (GRA) before interruption in planned GRA,ηand duration of interruptionτ. Characteristics of the dose accumulation were analyzed for different collimator angle sets, Plan A (10°, 85°) and Plan B (45° and 315°), for the first case.Main Results.Hot spots in theΔBEDdistribution forη= 25%, 50%, and 75% were observed at superior-and-interior ends, central region, and peripheral region in PTV, respectively. These behaviors could be understood by characteristics of the MKM-based model producing maximumΔBEDat 50% of the dose accumulation.ΔBED50%ranged 4.5%-6.6%, 5.0%-7.3%, and 5.3%-7.7% forτ= 60, 90, and 120 min, respectively. Plan A showed fast dose accumulation at superior and inferior edges while slow on peripheries in the lateral dose profile. Plan B showed more homogeneous PD distributions than Plan A during irradiation.Significance.The developed framework successfully evaluated and compensated for the decreased BED distribution.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.