Effect of tissue viscoelasticity on delivered mechanical power in a physical respiratory system model: distinguishing between airway and tissue resistance.
{"title":"Effect of tissue viscoelasticity on delivered mechanical power in a physical respiratory system model: distinguishing between airway and tissue resistance.","authors":"Šimon Walzel, Karel Roubik","doi":"10.1088/2057-1976/ad974b","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the mechanics of the respiratory system is crucial for optimizing ventilator settings and ensuring patient safety. While simple models of the respiratory system typically consider only flow resistance and lung compliance, lung tissue resistance is usually neglected. This study investigated the effect of lung tissue viscoelasticity on delivered mechanical power in a physical model of the respiratory system and the possibility of distinguishing tissue resistance from airway resistance using proximal pressure measured at the airway opening. Three different configurations of a passive physical model of the respiratory system representing different mechanical properties (Tissue resistance model, Airway resistance model, and No-resistance model) were tested. The same volume-controlled ventilation and parameters were set for each configuration, with only the inspiratory flow rates being adjusted. Pressure and flow were measured with a Datex-Ohmeda S/5 vital signs monitor (Datex-Ohmeda, Madison, WI, USA). Tissue resistance was intentionally tuned so that peak pressures and delivered mechanical energy measured at airway opening were similar in Tissue and Airway Resistance models. However, measurements inside the artificial lung revealed significant differences, with Tissue resistance model yielding up to 20% higher values for delivered mechanical energy. The results indicate the need to revise current methods of calculating mechanical power delivery, which do not distinguish between tissue resistance and airway flow resistance, making it difficult to evaluate and interpret the significance of mechanical power delivery in terms of lung ventilation protectivity.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad974b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the mechanics of the respiratory system is crucial for optimizing ventilator settings and ensuring patient safety. While simple models of the respiratory system typically consider only flow resistance and lung compliance, lung tissue resistance is usually neglected. This study investigated the effect of lung tissue viscoelasticity on delivered mechanical power in a physical model of the respiratory system and the possibility of distinguishing tissue resistance from airway resistance using proximal pressure measured at the airway opening. Three different configurations of a passive physical model of the respiratory system representing different mechanical properties (Tissue resistance model, Airway resistance model, and No-resistance model) were tested. The same volume-controlled ventilation and parameters were set for each configuration, with only the inspiratory flow rates being adjusted. Pressure and flow were measured with a Datex-Ohmeda S/5 vital signs monitor (Datex-Ohmeda, Madison, WI, USA). Tissue resistance was intentionally tuned so that peak pressures and delivered mechanical energy measured at airway opening were similar in Tissue and Airway Resistance models. However, measurements inside the artificial lung revealed significant differences, with Tissue resistance model yielding up to 20% higher values for delivered mechanical energy. The results indicate the need to revise current methods of calculating mechanical power delivery, which do not distinguish between tissue resistance and airway flow resistance, making it difficult to evaluate and interpret the significance of mechanical power delivery in terms of lung ventilation protectivity.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.