Phosphorus dynamics in volcanic soils of Weizhou Island, China: implications for environmental and agricultural applications.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2024-09-30 DOI:10.1007/s10653-024-02238-2
Ran Bi, Wei Fu, Xuanni Fu
{"title":"Phosphorus dynamics in volcanic soils of Weizhou Island, China: implications for environmental and agricultural applications.","authors":"Ran Bi, Wei Fu, Xuanni Fu","doi":"10.1007/s10653-024-02238-2","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamics of phosphorus are intricately governed by geological and ecological processes. Examining phosphorus dynamics in volcanic islands can enhance our comprehension of its behavior within such unique geological systems. However, research on phosphorus dynamics in volcanic islands remains limited. We investigated the phosphorus content of volcaniclastic rocks and basalt soils from Weizhou Island, China, to understand the influencing factors on phosphorus dynamics. The results indicate that in the volcaniclastic profile, phosphorus concentrates at 20-40 cm (17 mg/kg), decreases at 40-60 cm (11.9 mg/kg), and increases at 80-200 cm up to 46.4 mg/kg proximate to the bedrock, for the basalt profile, phosphorus content increases from the surface (80.2 mg/kg) towards the bedrock (83.9 mg/kg). The differences in phosphorus distribution between volcaniclastic rocks and basalts reflect the influence of parent material, rock weathering degree, carbonate content, topographic elevation, sea level changes, and geological activities. A strong positive correlation (R = 0.96907) between total and available phosphorus has been observed, suggesting that total phosphorus content effectively predicts available phosphorus content. Volcaniclastic rocks in wharves and high-elevation areas show low total phosphorus, while forest land with dense vegetation and neutral to alkaline soil supports higher total phosphorus due to enhanced bioavailability for plant absorption and utilization. Overall, the basalt soil of the volcanic island Weizhou Island demonstrates superior long-term fertility compared to the volcaniclastic soil. Despite its low total phosphorus content, it mainly exists in a highly bioavailable form, facilitating plant absorption, which is crucial for enhancing agricultural yields and ecosystem restoration on volcanic islands.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"458"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442536/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02238-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of phosphorus are intricately governed by geological and ecological processes. Examining phosphorus dynamics in volcanic islands can enhance our comprehension of its behavior within such unique geological systems. However, research on phosphorus dynamics in volcanic islands remains limited. We investigated the phosphorus content of volcaniclastic rocks and basalt soils from Weizhou Island, China, to understand the influencing factors on phosphorus dynamics. The results indicate that in the volcaniclastic profile, phosphorus concentrates at 20-40 cm (17 mg/kg), decreases at 40-60 cm (11.9 mg/kg), and increases at 80-200 cm up to 46.4 mg/kg proximate to the bedrock, for the basalt profile, phosphorus content increases from the surface (80.2 mg/kg) towards the bedrock (83.9 mg/kg). The differences in phosphorus distribution between volcaniclastic rocks and basalts reflect the influence of parent material, rock weathering degree, carbonate content, topographic elevation, sea level changes, and geological activities. A strong positive correlation (R = 0.96907) between total and available phosphorus has been observed, suggesting that total phosphorus content effectively predicts available phosphorus content. Volcaniclastic rocks in wharves and high-elevation areas show low total phosphorus, while forest land with dense vegetation and neutral to alkaline soil supports higher total phosphorus due to enhanced bioavailability for plant absorption and utilization. Overall, the basalt soil of the volcanic island Weizhou Island demonstrates superior long-term fertility compared to the volcaniclastic soil. Despite its low total phosphorus content, it mainly exists in a highly bioavailable form, facilitating plant absorption, which is crucial for enhancing agricultural yields and ecosystem restoration on volcanic islands.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国涠洲岛火山土壤中磷的动态变化:对环境和农业应用的影响。
磷的动态受地质和生态过程的复杂影响。研究火山岛中磷的动态可以加深我们对磷在这种独特地质系统中的行为的理解。然而,对火山岛磷动态的研究仍然有限。我们研究了中国涠洲岛火山碎屑岩和玄武岩土壤中的磷含量,以了解磷动态的影响因素。结果表明,在火山碎屑岩剖面中,磷主要集中在 20-40 厘米处(17 毫克/千克),在 40-60 厘米处减少(11.9 毫克/千克),在 80-200 厘米处增加到基岩附近的 46.4 毫克/千克;在玄武岩剖面中,磷含量从地表(80.2 毫克/千克)向基岩(83.9 毫克/千克)增加。火山碎屑岩和玄武岩磷分布的差异反映了母质、岩石风化程度、碳酸盐含量、地形高程、海平面变化和地质活动的影响。总磷与可利用磷之间存在很强的正相关性(R = 0.96907),表明总磷含量可有效预测可利用磷含量。码头和高海拔地区的火山碎屑岩显示出较低的总磷含量,而植被茂密、土壤呈中性至碱性的林地由于植物吸收和利用的生物有效性增强,总磷含量较高。总体而言,与火山碎屑岩土壤相比,火山岛涠洲岛的玄武岩土壤具有更高的长期肥力。尽管总磷含量较低,但主要以高生物利用率的形式存在,有利于植物吸收,这对提高火山岛农业产量和生态系统恢复至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Mercury in saliva, milk, and hair of nursing mothers in southeastern Iranian mothers: levels, distribution and risk assessment. Radon quantification in water and dose estimation via inhalation and ingestion across age groups in the Pattan region of North Kashmir, India. Effects of microplastics on 3,5-dichloroaniline adsorption, degradation, bioaccumulation and phytotoxicity in soil-chive systems. The impact of prenatal exposure to fine particulate matter and its components on maternal and neonatal thyroid function and birth weight: a prospective cohort study. Chemical analysis of toxic elements: total cadmium, lead, mercury, arsenic and inorganic arsenic in local and imported rice consumed in the Kingdom of Saudi Arabia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1