{"title":"Predicting the Association of Metabolites with Both Pathway Categories and Individual Pathways.","authors":"Erik D Huckvale, Hunter N B Moseley","doi":"10.3390/metabo14090510","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolism is a network of chemical reactions that sustain cellular life. Parts of this metabolic network are defined as metabolic pathways containing specific biochemical reactions. Products and reactants of these reactions are called metabolites, which are associated with certain human-defined metabolic pathways. Metabolic knowledgebases, such as the Kyoto Encyclopedia of Gene and Genomes (KEGG) contain metabolites, reactions, and pathway annotations; however, such resources are incomplete due to current limits of metabolic knowledge. To fill in missing metabolite pathway annotations, past machine learning models showed some success at predicting the KEGG Level 2 pathway category involvement of metabolites based on their chemical structure. Here, we present the first machine learning model to predict metabolite association to more granular KEGG Level 3 metabolic pathways. We used a feature and dataset engineering approach to generate over one million metabolite-pathway entries in the dataset used to train a single binary classifier. This approach produced a mean Matthews correlation coefficient (MCC) of 0.806 ± 0.017 SD across 100 cross-validation iterations. The 172 Level 3 pathways were predicted with an overall MCC of 0.726. Moreover, metabolite association with the 12 Level 2 pathway categories was predicted with an overall MCC of 0.891, representing significant transfer learning from the Level 3 pathway entries. These are the best metabolite pathway prediction results published so far in the field.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"14 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433779/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo14090510","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolism is a network of chemical reactions that sustain cellular life. Parts of this metabolic network are defined as metabolic pathways containing specific biochemical reactions. Products and reactants of these reactions are called metabolites, which are associated with certain human-defined metabolic pathways. Metabolic knowledgebases, such as the Kyoto Encyclopedia of Gene and Genomes (KEGG) contain metabolites, reactions, and pathway annotations; however, such resources are incomplete due to current limits of metabolic knowledge. To fill in missing metabolite pathway annotations, past machine learning models showed some success at predicting the KEGG Level 2 pathway category involvement of metabolites based on their chemical structure. Here, we present the first machine learning model to predict metabolite association to more granular KEGG Level 3 metabolic pathways. We used a feature and dataset engineering approach to generate over one million metabolite-pathway entries in the dataset used to train a single binary classifier. This approach produced a mean Matthews correlation coefficient (MCC) of 0.806 ± 0.017 SD across 100 cross-validation iterations. The 172 Level 3 pathways were predicted with an overall MCC of 0.726. Moreover, metabolite association with the 12 Level 2 pathway categories was predicted with an overall MCC of 0.891, representing significant transfer learning from the Level 3 pathway entries. These are the best metabolite pathway prediction results published so far in the field.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.