Engineering quorum sensing-based genetic circuits enhances growth and productivity robustness of industrial E. coli at low pH.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Microbial Cell Factories Pub Date : 2024-09-28 DOI:10.1186/s12934-024-02524-9
Xiaofang Yan, Anqi Bu, Yanfei Yuan, Xin Zhang, Zhanglin Lin, Xiaofeng Yang
{"title":"Engineering quorum sensing-based genetic circuits enhances growth and productivity robustness of industrial E. coli at low pH.","authors":"Xiaofang Yan, Anqi Bu, Yanfei Yuan, Xin Zhang, Zhanglin Lin, Xiaofeng Yang","doi":"10.1186/s12934-024-02524-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microbial organisms hold significant potential for converting renewable substrates into valuable chemicals. Low pH fermentation in industrial settings offers key advantages, including reduced neutralizer usage and decreased wastewater generation, particularly in the production of amino acids and organic acids. Engineering acid-tolerant strains represents a viable strategy to enhance productivity in acidic environments. Synthetic biology provides dynamic regulatory tools, such as gene circuits, facilitating precise expression of acid resistance (AR) modules in a just-in-time and just-enough manner.</p><p><strong>Results: </strong>In this study, we aimed to enhance the robustness and productivity of Escherichia coli, a workhorse for amino acid and organic acid production, in industrial fermentation under mild acidic conditions. We employed an Esa-type quorum sensing circuit to dynamically regulate the expression of an AR module (DsrA-Hfq) in a just-in-time and just-enough manner. Through careful engineering of the critical promoter P<sub>esaS</sub> and stepwise evaluation, we developed an optimal Esa-P<sub>BD</sub>(L) circuit that conferred upon an industrial E. coli strain SCEcL3 comparable lysine productivity and enhanced yield at pH 5.5 compared to the parent strain at pH 6.8.</p><p><strong>Conclusions: </strong>This study exemplifies the practical application of gene circuits in industrial environments, which present challenges far beyond those of well-controlled laboratory conditions.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"256"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02524-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Microbial organisms hold significant potential for converting renewable substrates into valuable chemicals. Low pH fermentation in industrial settings offers key advantages, including reduced neutralizer usage and decreased wastewater generation, particularly in the production of amino acids and organic acids. Engineering acid-tolerant strains represents a viable strategy to enhance productivity in acidic environments. Synthetic biology provides dynamic regulatory tools, such as gene circuits, facilitating precise expression of acid resistance (AR) modules in a just-in-time and just-enough manner.

Results: In this study, we aimed to enhance the robustness and productivity of Escherichia coli, a workhorse for amino acid and organic acid production, in industrial fermentation under mild acidic conditions. We employed an Esa-type quorum sensing circuit to dynamically regulate the expression of an AR module (DsrA-Hfq) in a just-in-time and just-enough manner. Through careful engineering of the critical promoter PesaS and stepwise evaluation, we developed an optimal Esa-PBD(L) circuit that conferred upon an industrial E. coli strain SCEcL3 comparable lysine productivity and enhanced yield at pH 5.5 compared to the parent strain at pH 6.8.

Conclusions: This study exemplifies the practical application of gene circuits in industrial environments, which present challenges far beyond those of well-controlled laboratory conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于法定人数感应的基因电路工程可提高工业大肠杆菌在低 pH 值条件下的生长和生产稳健性。
背景:微生物具有将可再生底物转化为有价值化学品的巨大潜力。工业环境中的低 pH 值发酵具有一些关键优势,包括减少中和剂的使用和废水的产生,特别是在氨基酸和有机酸的生产中。工程化耐酸菌株是在酸性环境中提高生产率的可行策略。合成生物学提供了动态调控工具,如基因回路,有助于以适时、适度的方式精确表达耐酸(AR)模块:在这项研究中,我们的目标是在弱酸性条件下的工业发酵中,提高大肠埃希菌(氨基酸和有机酸生产的主力军)的稳健性和生产率。我们采用了一种 Esa 型法定量感应电路,以适时、适度的方式动态调节 AR 模块(DsrA-Hfq)的表达。通过对关键启动子 PesaS 的精心设计和逐步评估,我们开发出了一种最佳的 Esa-PBD(L) 电路,在 pH 值为 5.5 时,与 pH 值为 6.8 时的亲本菌株相比,它能赋予工业大肠杆菌菌株 SCEcL3 相当的赖氨酸生产率和更高的产量:这项研究体现了基因线路在工业环境中的实际应用,而工业环境所面临的挑战远远超出了那些控制良好的实验室条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
期刊最新文献
Combined metabolic engineering and lipid droplets degradation to increase vitamin A production in Saccharomyces cerevisiae. Increased cytoplasmic expression of PETase enzymes in E. coli. Optimized production of a truncated form of the recombinant neuraminidase of influenza virus in Escherichia coli as host with suitable functional activity. Retraction Note: Potential use of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition and prevention method in viral infection. Multiscale modelling of bioprocess dynamics and cellular growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1