Analysis and Evaluation of Load-Carrying Capacity of CFRP-Reinforced Steel Structures.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2024-09-23 DOI:10.3390/polym16182678
Jian Zhao, Yongxing Huang, Kun Gong, Zhiguo Wen, Sinan Liu, Yanyan Hou, Xuewu Hong, Xuecheng Tong, Kai Shi, Ziyi Qu
{"title":"Analysis and Evaluation of Load-Carrying Capacity of CFRP-Reinforced Steel Structures.","authors":"Jian Zhao, Yongxing Huang, Kun Gong, Zhiguo Wen, Sinan Liu, Yanyan Hou, Xuewu Hong, Xuecheng Tong, Kai Shi, Ziyi Qu","doi":"10.3390/polym16182678","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon Fiber Reinforced Polymer (CFRP) can be used to reinforce steel structures depending on its high strength and lightweight resistance. To analyze and evaluate the load-carrying capacity of CFRP-reinforced steel structures. This study uses the Finite Element Analysis (FEA) and the experimental tests combined to investigate the influence that the reinforcement patterns and the relevant parameters have on the load-carrying capacity. We made specimens with different reinforcement patterns. Take the steel beam specimen with full reinforcement as an example. Compared with the load-carrying capacity of the steel beam reinforced by two-layer CFRP cloth, that respectively increases by 5.16% and 11.1% when the number of the CFRP cloth increases to four and six, respectively. Based on a specimen set consisting of CFRP-reinforced steel structures under different reinforcement patterns, the random forest algorithm is used to develop an evaluation model for the load carrying. The performance test results show that the MAE (Mean Absolute Error) of the evaluation model can reach 0.12 and the RMSE (Root Mean Square Error) is 0.25, presenting a good prediction accuracy, which lays a solid foundation for the research on the CFRP-based reinforcement technology and process.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435699/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16182678","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon Fiber Reinforced Polymer (CFRP) can be used to reinforce steel structures depending on its high strength and lightweight resistance. To analyze and evaluate the load-carrying capacity of CFRP-reinforced steel structures. This study uses the Finite Element Analysis (FEA) and the experimental tests combined to investigate the influence that the reinforcement patterns and the relevant parameters have on the load-carrying capacity. We made specimens with different reinforcement patterns. Take the steel beam specimen with full reinforcement as an example. Compared with the load-carrying capacity of the steel beam reinforced by two-layer CFRP cloth, that respectively increases by 5.16% and 11.1% when the number of the CFRP cloth increases to four and six, respectively. Based on a specimen set consisting of CFRP-reinforced steel structures under different reinforcement patterns, the random forest algorithm is used to develop an evaluation model for the load carrying. The performance test results show that the MAE (Mean Absolute Error) of the evaluation model can reach 0.12 and the RMSE (Root Mean Square Error) is 0.25, presenting a good prediction accuracy, which lays a solid foundation for the research on the CFRP-based reinforcement technology and process.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CFRP 加固钢结构的承载能力分析与评估。
碳纤维增强聚合物(CFRP)具有强度高、重量轻的特点,可用于加固钢结构。为了分析和评估 CFRP 加固钢结构的承载能力。本研究采用有限元分析(FEA)和实验测试相结合的方法,研究加固模式和相关参数对承载能力的影响。我们制作了不同配筋模式的试样。以全配筋钢梁试样为例。与采用两层 CFRP 布加固的钢梁相比,当 CFRP 布的数量增加到四层和六层时,其承载能力分别提高了 5.16% 和 11.1%。基于不同配筋模式下的 CFRP 加固钢结构试样集,采用随机森林算法建立了承载力评估模型。性能测试结果表明,评价模型的 MAE(平均绝对误差)可达 0.12,RMSE(均方根误差)为 0.25,具有较好的预测精度,为基于 CFRP 的加固技术和工艺研究奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Correction: Rehman et al. Nanocomposite Membranes for PEM-FCs: Effect of LDH Introduction on the Physic-Chemical Performance of Various Polymer Matrices. Polymers 2023, 15, 502. Analysis and Evaluation of Load-Carrying Capacity of CFRP-Reinforced Steel Structures. Analyzing Homogeneity of Highly Viscous Polymer Suspensions in Change Can Mixers. Cross-Linking Agents in Three-Component Materials Dedicated to Biomedical Applications: A Review. High-Quality Foaming and Weight Reduction in Microcellular-Injection-Molded Polycarbonate Using Supercritical Fluid Carbon Dioxide under Gas Counter Pressure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1