Zonglin Li , Pan Wang , Chengcheng Ao , Tong Yan , Lidong Zhang , Jianwen Cai , Haodong Meng
{"title":"Study of the N2O formation mechanism in NOx-assisted heterogeneous catalytic combustion of soot in CeO2-based catalytic microchannel reactor","authors":"Zonglin Li , Pan Wang , Chengcheng Ao , Tong Yan , Lidong Zhang , Jianwen Cai , Haodong Meng","doi":"10.1016/j.joei.2024.101842","DOIUrl":null,"url":null,"abstract":"<div><div>A CeO<sub>2</sub>-based catalytic microchannel reactor fixed-bed experiment was carried out to investigate the N<sub>2</sub>O formation in NO<sub>x</sub>-assisted catalytic combustion with fresh and hydrothermally aging catalysts during NOx-assisted heterogeneous catalytic combustion of soot. An evolved NOx-assisted soot catalytic combustion reaction mechanism was built to investigate N<sub>2</sub>O formation and key reaction pathways based on in situ Fourier Transform Infrared Spectroscopy (FTIR) diagnostics and destiny functional theory (DFT) computations. It was found that the temperature range of N<sub>2</sub>O formation was the same as the initiation temperature of soot catalytic combustion, while the significant catalytic activity of CeO<sub>2</sub> catalyst induced a decrease in the temperature range of N<sub>2</sub>O formation. The CeO<sub>2</sub> catalyst inhibited N<sub>2</sub>O formations from NOx-assisted soot catalytic combustion, while its inhibition effect was gradually weakened with the decrease of catalyst activities. The inhibitory effect of CeO<sub>2</sub> on N<sub>2</sub>O was revealed in the reduction of CN formation rate in high temperatures. Fresh CeO<sub>2</sub> catalyst increased the dominance in the CN formation reaction, reduced the CN production rate, and contributed to the decrease in the reaction rate of CNO oxidation by NO and NO<sub>2</sub>. The increase in the ratio of NOx to soot (<em>β</em>) was more sensitive to N<sub>2</sub>O formation than the ratio <em>α</em> (NO<sub>2</sub> to NOx) and <em>γ</em> (O<sub>2</sub> to NO<sub>x</sub>), led to a stronger inhibition of N<sub>2</sub>O formation.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101842"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003209","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
A CeO2-based catalytic microchannel reactor fixed-bed experiment was carried out to investigate the N2O formation in NOx-assisted catalytic combustion with fresh and hydrothermally aging catalysts during NOx-assisted heterogeneous catalytic combustion of soot. An evolved NOx-assisted soot catalytic combustion reaction mechanism was built to investigate N2O formation and key reaction pathways based on in situ Fourier Transform Infrared Spectroscopy (FTIR) diagnostics and destiny functional theory (DFT) computations. It was found that the temperature range of N2O formation was the same as the initiation temperature of soot catalytic combustion, while the significant catalytic activity of CeO2 catalyst induced a decrease in the temperature range of N2O formation. The CeO2 catalyst inhibited N2O formations from NOx-assisted soot catalytic combustion, while its inhibition effect was gradually weakened with the decrease of catalyst activities. The inhibitory effect of CeO2 on N2O was revealed in the reduction of CN formation rate in high temperatures. Fresh CeO2 catalyst increased the dominance in the CN formation reaction, reduced the CN production rate, and contributed to the decrease in the reaction rate of CNO oxidation by NO and NO2. The increase in the ratio of NOx to soot (β) was more sensitive to N2O formation than the ratio α (NO2 to NOx) and γ (O2 to NOx), led to a stronger inhibition of N2O formation.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.