Inhibition of Ni oxidation in a Ni-based catalyst to enhance the catalytic activity for lignin upgrading: Sacrificing Co to protect Ni

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2025-02-01 DOI:10.1016/j.joei.2024.101932
Long-Yu Zhang , Xiao-Fan Tang , Min Li , Xian-Yong Wei , Xing-Shun Cong , Li Li
{"title":"Inhibition of Ni oxidation in a Ni-based catalyst to enhance the catalytic activity for lignin upgrading: Sacrificing Co to protect Ni","authors":"Long-Yu Zhang ,&nbsp;Xiao-Fan Tang ,&nbsp;Min Li ,&nbsp;Xian-Yong Wei ,&nbsp;Xing-Shun Cong ,&nbsp;Li Li","doi":"10.1016/j.joei.2024.101932","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrodeoxygenation (HDO) is a promising technology for high-value utilization of lignin. However, the oxidative deactivation of active metals is still an insurmountable obstacle in the development of catalysts. NiCo/USY was prepared by Co sacrificial protection method and used for the HDO of lignin. A series of characterization and experimental results confirmed that the electron transfer from Co to Ni inhibited the oxidation of Ni and activated the intrinsic catalytic activity of Ni. Lignin was subjected to catalytic HDO over NiCo/USY in n-hexane under 2 MPa of initial hydrogen pressure at 220 °C for 4 h. The result shows that NiCo/USY exhibits excellent HDO activity of lignin with the yield of cyclanes is 56.1 %. In NiCo/USY, nickel nanoparticles with electron transferred from Co and mesoporous USY with abundant acidic centers play an important role in hydrogenating aromatic rings and removing oxygen atom, respectively. benzyloxybenzene and (oxybis(methylene))dibenzene were used as the lignin-related model compounds to investigate the mechanism for the HDO of lignin.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"118 ","pages":"Article 101932"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124004100","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrodeoxygenation (HDO) is a promising technology for high-value utilization of lignin. However, the oxidative deactivation of active metals is still an insurmountable obstacle in the development of catalysts. NiCo/USY was prepared by Co sacrificial protection method and used for the HDO of lignin. A series of characterization and experimental results confirmed that the electron transfer from Co to Ni inhibited the oxidation of Ni and activated the intrinsic catalytic activity of Ni. Lignin was subjected to catalytic HDO over NiCo/USY in n-hexane under 2 MPa of initial hydrogen pressure at 220 °C for 4 h. The result shows that NiCo/USY exhibits excellent HDO activity of lignin with the yield of cyclanes is 56.1 %. In NiCo/USY, nickel nanoparticles with electron transferred from Co and mesoporous USY with abundant acidic centers play an important role in hydrogenating aromatic rings and removing oxygen atom, respectively. benzyloxybenzene and (oxybis(methylene))dibenzene were used as the lignin-related model compounds to investigate the mechanism for the HDO of lignin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Editorial Board Corrigendum to “An image-processing method based on regional separation-parameter coupling for the stability analysis of biodiesel flame” [J. Energy Inst. 114 (2024) 101640] Inhibition of Ni oxidation in a Ni-based catalyst to enhance the catalytic activity for lignin upgrading: Sacrificing Co to protect Ni Development of a comprehensive model for evaluating slagging characteristics in the Co-combustion of coal and biomass Na/CaFe2O4 catalysts for efficient CO2 hydrogenation to light olefins: Composition effects and catalytic mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1