Dynamic spectroscopic and optical characterization and modeling of bovine serum albumin corona during interaction with N-hydroxysulfo-succinimide-covalently functionalized gold nanourchins.

IF 1.6 4区 医学 Q4 BIOPHYSICS Biointerphases Pub Date : 2024-09-01 DOI:10.1116/6.0003715
Mohammad E Khosroshahi, Vaughan Woll-Morison, Kyungho Kim
{"title":"Dynamic spectroscopic and optical characterization and modeling of bovine serum albumin corona during interaction with N-hydroxysulfo-succinimide-covalently functionalized gold nanourchins.","authors":"Mohammad E Khosroshahi, Vaughan Woll-Morison, Kyungho Kim","doi":"10.1116/6.0003715","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, bovine serum albumin (BSA) is used as a globular protein model to examine the conformational changes that occur during the interaction of BSA with N-hydroxysulfo-succinimide (sodium salt)-functionalized gold nanourchins (GNUs), for which dynamic spectroscopic techniques are employed. The results showed that the absorbance of phosphate-buffered saline-BSA at 278 nm decreased when a GNU was added to the solution due to adsorption, and it decreased further when the GNU was increased. The intensity and width of the peak of local surface plasmon resonance increased, indicating the effect of corona formation. Dynamic UV-vis spectroscopy and scattering revealed a nonlinear behavior of BSA-GNU interaction. The bioplasmonic solution resulted in higher transmission and scattering than the BSA solution. Fourier transform-near-infrared spectra exhibited several bands due to overtones and combinations of the amide group and different proportions of α-helix and β-sheet components in BSA before and after the addition of the GNU. Time-resolved fluorescence spectroscopy demonstrated an initial increase in blueshifted emission, followed by a redshifted quenching of two major peaks of Tyr and tryptophan (Trp). The binding and dissociation constants were determined as Kb = 2.17 × 1010 M-1 and Kd = 4.6 × 10-11, respectively, using the Stern-Volmer relation. Both the dynamic CMOS-based imaging and the cadmium sulfide sensors demonstrated a nonlinear response of bioplasmonic solution. By increasing the GNU, the resistance of the solution decreased in the order of A > S1 > S3, where S3 exhibited the highest initial transmission with a longer desorption time. MATLAB modeling showed 80% surface coverage by the protein in 15 s at 0.05M, equivalent to a thickness of 1.7 nm, which was in agreement with the value determined by using the Stokes-Einstein relation.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0003715","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, bovine serum albumin (BSA) is used as a globular protein model to examine the conformational changes that occur during the interaction of BSA with N-hydroxysulfo-succinimide (sodium salt)-functionalized gold nanourchins (GNUs), for which dynamic spectroscopic techniques are employed. The results showed that the absorbance of phosphate-buffered saline-BSA at 278 nm decreased when a GNU was added to the solution due to adsorption, and it decreased further when the GNU was increased. The intensity and width of the peak of local surface plasmon resonance increased, indicating the effect of corona formation. Dynamic UV-vis spectroscopy and scattering revealed a nonlinear behavior of BSA-GNU interaction. The bioplasmonic solution resulted in higher transmission and scattering than the BSA solution. Fourier transform-near-infrared spectra exhibited several bands due to overtones and combinations of the amide group and different proportions of α-helix and β-sheet components in BSA before and after the addition of the GNU. Time-resolved fluorescence spectroscopy demonstrated an initial increase in blueshifted emission, followed by a redshifted quenching of two major peaks of Tyr and tryptophan (Trp). The binding and dissociation constants were determined as Kb = 2.17 × 1010 M-1 and Kd = 4.6 × 10-11, respectively, using the Stern-Volmer relation. Both the dynamic CMOS-based imaging and the cadmium sulfide sensors demonstrated a nonlinear response of bioplasmonic solution. By increasing the GNU, the resistance of the solution decreased in the order of A > S1 > S3, where S3 exhibited the highest initial transmission with a longer desorption time. MATLAB modeling showed 80% surface coverage by the protein in 15 s at 0.05M, equivalent to a thickness of 1.7 nm, which was in agreement with the value determined by using the Stokes-Einstein relation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
牛血清白蛋白电晕与 N-hydroxysulfo-succinimide 共价功能化金纳米胆相互作用过程中的动态光谱和光学表征及建模。
本研究以牛血清白蛋白(BSA)为球状蛋白质模型,考察了BSA与N-羟基磺酰基琥珀酰亚胺(钠盐)功能化纳米金(GNUs)相互作用过程中发生的构象变化,并为此采用了动态光谱技术。结果表明,当溶液中加入一个 GNU 时,磷酸盐缓冲液-BSA 在 278 纳米波长处的吸光度因吸附作用而下降,当 GNU 增加时,吸光度进一步下降。局部表面等离子体共振峰的强度和宽度增加,表明电晕形成的影响。动态紫外可见光谱和散射显示了 BSA-GNU 相互作用的非线性行为。与 BSA 溶液相比,生物质溶液具有更高的透射率和散射率。傅立叶变换-近红外光谱显示出多个波段,这些波段是由于酰胺基的泛音和组合以及添加 GNU 前后 BSA 中 α 螺旋和 β 片成分的不同比例造成的。时间分辨荧光光谱显示,最初蓝移发射增加,随后 Tyr 和色氨酸(Trp)的两个主要峰出现红移淬灭。根据 Stern-Volmer 关系,结合常数和解离常数分别为 Kb = 2.17 × 1010 M-1 和 Kd = 4.6 × 10-11。基于 CMOS 的动态成像和硫化镉传感器都显示出生物光子学溶液的非线性响应。通过增加 GNU,溶液的电阻按照 A > S1 > S3 的顺序下降,其中 S3 的初始传输率最高,解吸时间较长。MATLAB 建模显示,在 0.05M 时,蛋白质在 15 秒内覆盖了 80% 的表面,相当于 1.7 纳米的厚度,这与使用斯托克斯-爱因斯坦关系确定的值一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
期刊最新文献
Influence of metal oxides on biocompatibility of additively manufactured NiTi. Molecular-level studies of extracellular matrix proteins conducted using atomic force microscopy. Phenomenological investigation of organic modified cements as biocompatible substrates interfacing model marine organisms. Dynamic spectroscopic and optical characterization and modeling of bovine serum albumin corona during interaction with N-hydroxysulfo-succinimide-covalently functionalized gold nanourchins. Adsorption of cytochrome c on different self-assembled monolayers: The role of surface chemistry and charge density.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1