The CsTIE1-CsAGL16 module regulates lateral branch outgrowth and drought tolerance in cucumber

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Horticulture Research Pub Date : 2024-10-02 DOI:10.1093/hr/uhae279
Jiacai Chen, Guangxin Chen, Jingyu Guo, Yuting He, Liu Liu, Shaoyun Wang, Chaoheng Gu, Lijie Han, Min Li, Weiyuan Song, Liming Wang, Xiaolan Zhang, Jianyu Zhao
{"title":"The CsTIE1-CsAGL16 module regulates lateral branch outgrowth and drought tolerance in cucumber","authors":"Jiacai Chen, Guangxin Chen, Jingyu Guo, Yuting He, Liu Liu, Shaoyun Wang, Chaoheng Gu, Lijie Han, Min Li, Weiyuan Song, Liming Wang, Xiaolan Zhang, Jianyu Zhao","doi":"10.1093/hr/uhae279","DOIUrl":null,"url":null,"abstract":"Drought stress and lateral branch are both important factors affecting crop yield. Cucumber is a widely planted vegetable crop that requires a large amount of water during its production and prefers varieties with few lateral branches. However, the mechanism regulating cucumber drought tolerance and lateral branch development remain largely unclear. The MADS-box transcription factor AGAMOUS-LIKE 16 (CsAGL16) was recently found to be a key positive regulator in cucumber shoot branching through stimulating ABA catabolism. In this study, we demonstrated that cucumber TCP interactor containing EAR motif protein 1 (CsTIE1) directly interacts with CsAGL16 at protein level and promotes lateral branch outgrowth through the CsAGL16-CsCYP707A4 mediated ABA pathway in cucumber. Additionally, mutation of CsAGL16 resulted in decreased drought tolerance, while overexpression of CsAGL16 significantly enhanced drought tolerance in cucumber. Similarly, the drought resistance of Cstie1 mutants was significantly reduced. However, overexpression of CsAGL16 can enhance the drought tolerance of Cstie1 mutants and promote their lateral branch outgrowth. These results indicated that the CsTIE1-CsAGL16 module was crucial for both lateral branch development and drought response, providing a strategy for cultivating drought tolerant cucumber varieties with appropriate branch outgrowth.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae279","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Drought stress and lateral branch are both important factors affecting crop yield. Cucumber is a widely planted vegetable crop that requires a large amount of water during its production and prefers varieties with few lateral branches. However, the mechanism regulating cucumber drought tolerance and lateral branch development remain largely unclear. The MADS-box transcription factor AGAMOUS-LIKE 16 (CsAGL16) was recently found to be a key positive regulator in cucumber shoot branching through stimulating ABA catabolism. In this study, we demonstrated that cucumber TCP interactor containing EAR motif protein 1 (CsTIE1) directly interacts with CsAGL16 at protein level and promotes lateral branch outgrowth through the CsAGL16-CsCYP707A4 mediated ABA pathway in cucumber. Additionally, mutation of CsAGL16 resulted in decreased drought tolerance, while overexpression of CsAGL16 significantly enhanced drought tolerance in cucumber. Similarly, the drought resistance of Cstie1 mutants was significantly reduced. However, overexpression of CsAGL16 can enhance the drought tolerance of Cstie1 mutants and promote their lateral branch outgrowth. These results indicated that the CsTIE1-CsAGL16 module was crucial for both lateral branch development and drought response, providing a strategy for cultivating drought tolerant cucumber varieties with appropriate branch outgrowth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CsTIE1-CsAGL16 模块调控黄瓜侧枝生长和耐旱性
干旱胁迫和侧枝都是影响作物产量的重要因素。黄瓜是一种广泛种植的蔬菜作物,在生产过程中需要大量的水,并且喜欢侧枝较少的品种。然而,黄瓜耐旱性和侧枝发育的调控机制在很大程度上仍不清楚。最近发现,MADS-框转录因子AGAMOUS-LIKE 16(CsAGL16)通过刺激ABA分解,成为黄瓜芽分枝的关键正调控因子。在本研究中,我们证明了黄瓜含 EAR motif 蛋白 1 的 TCP 互作因子(CsTIE1)在蛋白水平上与 CsAGL16 直接互作,并通过 CsAGL16-CsCYP707A4 介导的 ABA 通路促进黄瓜侧枝的生长。此外,突变 CsAGL16 会降低黄瓜的抗旱性,而过表达 CsAGL16 则会显著增强黄瓜的抗旱性。同样,Cstie1 突变体的抗旱性也显著降低。然而,过表达 CsAGL16 可增强 Cstie1 突变体的耐旱性,并促进其侧枝生长。这些结果表明,CsTIE1-CsAGL16模块对侧枝发育和干旱响应都至关重要,为培育具有适当侧枝生长的耐旱黄瓜品种提供了一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
期刊最新文献
Recent trends in the elucidation of complex triterpene biosynthetic pathways in horticultural trees Natural variation in MdNAC5 contributes to fruit firmness and ripening divergence in apple SlSTOP1-regulated SlHAK5 expression confers Al tolerance in tomato by facilitating citrate secretion from roots The CsTIE1-CsAGL16 module regulates lateral branch outgrowth and drought tolerance in cucumber A vacuolar invertase gene SlVI modulates sugar metabolism and postharvest fruit quality and stress resistance in tomato
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1