Michael L Garelja, Tyla I Alexander, Christopher S Walker, Debbie L Hay
{"title":"Extracellular bimolecular fluorescence complementation for investigating membrane protein dimerization: a proof of concept using class B GPCRs.","authors":"Michael L Garelja, Tyla I Alexander, Christopher S Walker, Debbie L Hay","doi":"10.1042/BSR20240449","DOIUrl":null,"url":null,"abstract":"<p><p>Bimolecular fluorescence complementation (BiFC) methodology uses split fluorescent proteins to detect interactions between proteins in living cells. To date, BiFC has been used to investigate receptor dimerization by splitting the fluorescent protein between the intracellular portions of different receptor components. We reasoned that attaching these split proteins to the extracellular N-terminus instead may improve the flexibility of this methodology and reduce the likelihood of impaired intracellular signal transduction. As a proof-of-concept, we used receptors for calcitonin gene-related peptide, which comprise heterodimers of either the calcitonin or calcitonin receptor-like receptor in complex with an accessory protein (receptor activity-modifying protein 1). We created fusion constructs in which split mVenus fragments were attached to either the C-termini or N-termini of receptor subunits. The resulting constructs were transfected into Cos7 and HEK293S cells, where we measured cAMP production in response to ligand stimulation, cell surface expression of receptor complexes, and BiFC fluorescence. Additionally, we investigated ligand-dependent internalization in HEK293S cells. We found N-terminal fusions were better tolerated with regards to cAMP signaling and receptor internalization. N-terminal fusions also allowed reconstitution of functional fluorescent mVenus proteins; however, fluorescence yields were lower than with C-terminal fusion. Our results suggest that BiFC methodologies can be applied to the receptor N-terminus, thereby increasing the flexibility of this approach, and enabling further insights into receptor dimerization.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499381/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20240449","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bimolecular fluorescence complementation (BiFC) methodology uses split fluorescent proteins to detect interactions between proteins in living cells. To date, BiFC has been used to investigate receptor dimerization by splitting the fluorescent protein between the intracellular portions of different receptor components. We reasoned that attaching these split proteins to the extracellular N-terminus instead may improve the flexibility of this methodology and reduce the likelihood of impaired intracellular signal transduction. As a proof-of-concept, we used receptors for calcitonin gene-related peptide, which comprise heterodimers of either the calcitonin or calcitonin receptor-like receptor in complex with an accessory protein (receptor activity-modifying protein 1). We created fusion constructs in which split mVenus fragments were attached to either the C-termini or N-termini of receptor subunits. The resulting constructs were transfected into Cos7 and HEK293S cells, where we measured cAMP production in response to ligand stimulation, cell surface expression of receptor complexes, and BiFC fluorescence. Additionally, we investigated ligand-dependent internalization in HEK293S cells. We found N-terminal fusions were better tolerated with regards to cAMP signaling and receptor internalization. N-terminal fusions also allowed reconstitution of functional fluorescent mVenus proteins; however, fluorescence yields were lower than with C-terminal fusion. Our results suggest that BiFC methodologies can be applied to the receptor N-terminus, thereby increasing the flexibility of this approach, and enabling further insights into receptor dimerization.
期刊介绍:
Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences.
Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase.
Articles are assessed on soundness, providing a home for valid findings and data.
We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing:
-new methodologies
-tools and reagents to probe biological questions
-mechanistic details
-disease mechanisms
-metabolic processes and their regulation
-structure and function
-bioenergetics