Support Vector Machine for Prediction of the Electronic Factors of a Schottky Configuration Interlaid with Pure PVC and Doped by Sm2O3 Nanoparticles

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-10-03 DOI:10.1002/aelm.202400624
Yashar Azizian‐Kalandaragh, Ali Barkhordari, Yosef Badali
{"title":"Support Vector Machine for Prediction of the Electronic Factors of a Schottky Configuration Interlaid with Pure PVC and Doped by Sm2O3 Nanoparticles","authors":"Yashar Azizian‐Kalandaragh, Ali Barkhordari, Yosef Badali","doi":"10.1002/aelm.202400624","DOIUrl":null,"url":null,"abstract":"This work uses the Support Vector Machine (SVM) to predict the main electronic variables of metal‐semiconductor (MS) and metal‐nanocomposite‐semiconductor (MPS) configurations, i.e., leak current (I<jats:sub>0</jats:sub>), the height of the potential barrier (Φ<jats:sub>B0</jats:sub>), ideality coefficient (n), series/shunt resistances (R<jats:sub>s</jats:sub>/R<jats:sub>sh</jats:sub>), rectification ratio (RR), and surface/interface states density (N<jats:sub>ss</jats:sub>), along with current conduction/transport mechanisms occurred into them at the reverse/forward biases by analyzing the I–V measurements. The polyvinyl chloride (PVC) and samarium oxide (Sm<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) nanoparticles are combined to form the two interfacial layers. To analyze the I–V characteristics and train the SVM, the thermionic emission theorem is used. By contrasting the predicted and experimental results, the predictive ability of the SVM approach for predicting the electronic specifications of the fabricated structures and their current conduction/transport processes has been evaluated to investigate the effectiveness of the SVM. There is strong agreement between the experimental data and the SVM predictions of the fundamental electronic characterizations of the MS and MPS structures and the current conduction processes in them at the forward/reverse biases. Additionally, the results demonstrate that the RR value of the MS configuration increases 4 and 53 times if the pure PVC and PVC:Sm<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> composite interlayers are employed.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"23 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400624","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work uses the Support Vector Machine (SVM) to predict the main electronic variables of metal‐semiconductor (MS) and metal‐nanocomposite‐semiconductor (MPS) configurations, i.e., leak current (I0), the height of the potential barrier (ΦB0), ideality coefficient (n), series/shunt resistances (Rs/Rsh), rectification ratio (RR), and surface/interface states density (Nss), along with current conduction/transport mechanisms occurred into them at the reverse/forward biases by analyzing the I–V measurements. The polyvinyl chloride (PVC) and samarium oxide (Sm2O3) nanoparticles are combined to form the two interfacial layers. To analyze the I–V characteristics and train the SVM, the thermionic emission theorem is used. By contrasting the predicted and experimental results, the predictive ability of the SVM approach for predicting the electronic specifications of the fabricated structures and their current conduction/transport processes has been evaluated to investigate the effectiveness of the SVM. There is strong agreement between the experimental data and the SVM predictions of the fundamental electronic characterizations of the MS and MPS structures and the current conduction processes in them at the forward/reverse biases. Additionally, the results demonstrate that the RR value of the MS configuration increases 4 and 53 times if the pure PVC and PVC:Sm2O3 composite interlayers are employed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持向量机预测纯聚氯乙烯和掺杂 Sm2O3 纳米粒子的肖特基配置的电子因子
本研究利用支持向量机 (SVM) 预测金属-半导体 (MS) 和金属-纳米复合材料-半导体 (MPS) 配置的主要电子变量,即:泄漏电流 (I0)、势垒高度 (ΦB0)、表意系数 (n)、串联/并联电阻 (Rs/Rsh)、整流比 (RR)、漏电流 (I0)、势垒高度 (ΦB0)、意向系数 (n)、串联/并联电阻 (Rs/Rsh)、整流比 (RR) 和表面/界面态密度 (Nss)。聚氯乙烯(PVC)和氧化钐(Sm2O3)纳米粒子结合形成两个界面层。为了分析 I-V 特性和训练 SVM,使用了热释电定理。通过对比预测结果和实验结果,评估了 SVM 方法对制备结构的电子规格及其当前传导/传输过程的预测能力,以研究 SVM 的有效性。实验数据与 SVM 对 MS 和 MPS 结构的基本电子特性及其在正向/反向偏压下的电流传导过程的预测非常一致。此外,结果表明,如果采用纯 PVC 和 PVC:Sm2O3 复合夹层,MS 结构的 RR 值会分别增加 4 倍和 53 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Photothermal Driven Biomimetic Actuator Based on Asymmetric Microstructure Nb2CTx MXene Film Ag Nanoparticle Ink for High-Resolution Printed Electrodes and Organic Thin-Film Transistors Using Reverse-Offset Printing A Self-Organizing Map Spiking Neural Network Based on Tin Oxide Memristive Synapses and Neurons Self-Powered UV Photodetectors With Ultrahigh Performance Enabled by Graphene Oxide-Modulated CuI Hole Transport Layer Tuning the Organic Electrochemical Transistor (OECT) Threshold Voltage with Monomer Blends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1