Ferroelectric Compensation Effect of the Hard Electrode for the HfO2-ZrO2 Superlattice Films at the Low-Annealing Temperature

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2025-02-17 DOI:10.1002/aelm.202400830
Chuqian Zhu, Na Bai, Yufan Wang, Huajun Sun, Lanqing Zou, Yunhui Yi, Jiyang Xu, Jiawang Ren, Junming Zhang, Sheng Hu, Kanhao Xue, Lei Ye, Weiming Cheng, Qiang He, Xiangshui Miao
{"title":"Ferroelectric Compensation Effect of the Hard Electrode for the HfO2-ZrO2 Superlattice Films at the Low-Annealing Temperature","authors":"Chuqian Zhu,&nbsp;Na Bai,&nbsp;Yufan Wang,&nbsp;Huajun Sun,&nbsp;Lanqing Zou,&nbsp;Yunhui Yi,&nbsp;Jiyang Xu,&nbsp;Jiawang Ren,&nbsp;Junming Zhang,&nbsp;Sheng Hu,&nbsp;Kanhao Xue,&nbsp;Lei Ye,&nbsp;Weiming Cheng,&nbsp;Qiang He,&nbsp;Xiangshui Miao","doi":"10.1002/aelm.202400830","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the ferroelectric (FE) performance of [HfO<sub>2</sub>/ZrO<sub>2</sub>]<sub>6</sub> superlattice FE capacitors using different top electrodes (TE). The unidirectional rapid thermal annealing (RTA) process from 450 to 600 °C is conducted. The device's remanent polarization (<i>P<sub>r</sub></i>) improved with TE hardness, and is maintained with harder TE at lower temperature. Furthermore, the superlattice's endurance and the recovery feature improve with harder TE. The increased orthorhombic phase (o-phase) content and the decreased tetragonal phase (t-phase) content indicate that the hard TE's out-of-plane stress at the interface suppressed the phase transition from the t-phase to the monoclinic phase (m-phase) and promotes the o-phase formation. It's known that hard electrodes usually have low coefficient of thermal expansion (CTE), which can generate high in-plane tensile strain optimizing the FE properties, so the lower-CTE electrodes devices’ FE performances are expected to degrade more with temperature decreasing, which is opposite with the experimental results. Therefore, hard electrodes can generate high out-of-plane compressive stress to offset the reduced in-plane tensile stress, leading to a FE compensation effect in low temperature thermal process.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 13","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400830","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aelm.202400830","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the ferroelectric (FE) performance of [HfO2/ZrO2]6 superlattice FE capacitors using different top electrodes (TE). The unidirectional rapid thermal annealing (RTA) process from 450 to 600 °C is conducted. The device's remanent polarization (Pr) improved with TE hardness, and is maintained with harder TE at lower temperature. Furthermore, the superlattice's endurance and the recovery feature improve with harder TE. The increased orthorhombic phase (o-phase) content and the decreased tetragonal phase (t-phase) content indicate that the hard TE's out-of-plane stress at the interface suppressed the phase transition from the t-phase to the monoclinic phase (m-phase) and promotes the o-phase formation. It's known that hard electrodes usually have low coefficient of thermal expansion (CTE), which can generate high in-plane tensile strain optimizing the FE properties, so the lower-CTE electrodes devices’ FE performances are expected to degrade more with temperature decreasing, which is opposite with the experimental results. Therefore, hard electrodes can generate high out-of-plane compressive stress to offset the reduced in-plane tensile stress, leading to a FE compensation effect in low temperature thermal process.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温下硬电极对HfO2-ZrO2超晶格薄膜的铁电补偿效应
本文研究了采用不同顶电极(TE)制备的[HfO2/ZrO2]6超晶格FE电容器的铁电性能。进行了450 ~ 600℃的单向快速热退火(RTA)工艺。该器件的残余极化(Pr)随TE硬度的提高而提高,且在较低温度下使用较硬的TE时仍能保持。此外,随着TE的硬度增加,超晶格的耐久性和恢复特性也有所提高。正交相(o相)含量的增加和四方相(t相)含量的减少表明,界面处的面外应力抑制了t相向单斜相(m相)的转变,促进了o相的形成。众所周知,硬电极通常具有较低的热膨胀系数(CTE),可以产生较高的面内拉伸应变,从而优化有限元性能,因此,随着温度的降低,低CTE电极器件的有限元性能预计会下降更多,这与实验结果相反。因此,硬电极可以产生高的面外压应力来抵消面内拉应力的减小,从而在低温热过程中产生有限元补偿效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
High-Performance and Energy-Efficient Sub-5 nm 2D Double-Gate MOSFETs Based on Silicon Arsenide Monolayers AI-Assisted Bioelectronics for Personalized Health Management Concurrent Sensing and Communications Based on Intelligent Metasurfaces Pinch-Off Mechanism of High-Gain Organic Transistors with Field Plates: Statistical Analysis, Device Simulations and Compact Modeling Robust C–V Ratio Technique for Profiling Defects in Proton‐Irradiated 4H‐SiC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1