Increased artemisinin production in Artemisia annua L. by co-overexpression of six key biosynthetic enzymes.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2024-10-04 DOI:10.1016/j.ijbiomac.2024.136291
Firdaus Qamar, Anuradha Mishra, Kudsiya Ashrafi, Monica Saifi, Prasanta K Dash, Shashi Kumar, M Z Abdin
{"title":"Increased artemisinin production in Artemisia annua L. by co-overexpression of six key biosynthetic enzymes.","authors":"Firdaus Qamar, Anuradha Mishra, Kudsiya Ashrafi, Monica Saifi, Prasanta K Dash, Shashi Kumar, M Z Abdin","doi":"10.1016/j.ijbiomac.2024.136291","DOIUrl":null,"url":null,"abstract":"<p><p>Malaria remains a global health issue, especially in resource-limited regions. Artemisinin, a key antimalarial compound from Artemisia annua, is crucial for treatment, but low natural yields hinder large-scale production. In this study, we employed advanced transgenic technology to co-overexpress six key biosynthetic enzymes-Isopentenyl Diphosphate Isomerase (IDI), Farnesyl Pyrophosphate Synthase (FPS), Amorpha 4,11-diene Synthase (ADS), cytochrome P450 monooxygenase (CYP71AV1), cytochrome P450 oxidoreductase (AACPR) and artemisinic aldehyde D11 reductase (DBR2)-in A. annua to significantly enhance artemisinin production. Our innovative approach utilized a co-expression strategy to optimize the artemisinin biosynthetic pathway, leading to a remarkable up to 200 % increase in artemisinin content in T1 transgenic plants compared to non-transgenic controls. The stability and efficacy of this transformation were confirmed in subsequent generations (T2), achieving a potential 232 % increase in artemisinin levels. Additionally, we optimized transgene expression to maintain plant growth and development, and performed untargeted metabolite analysis using GC-MS, which revealed significant changes in metabolite composition among T2 lines, indicating effective diversion of farnesyl diphosphate into the artemisinin pathway. This metabolic engineering breakthrough offers a promising and scalable solution for enhancing artemisinin production, representing a major advancement in the field of plant biotechnology and a potential strategy for more cost-effective malaria treatment.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.136291","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Malaria remains a global health issue, especially in resource-limited regions. Artemisinin, a key antimalarial compound from Artemisia annua, is crucial for treatment, but low natural yields hinder large-scale production. In this study, we employed advanced transgenic technology to co-overexpress six key biosynthetic enzymes-Isopentenyl Diphosphate Isomerase (IDI), Farnesyl Pyrophosphate Synthase (FPS), Amorpha 4,11-diene Synthase (ADS), cytochrome P450 monooxygenase (CYP71AV1), cytochrome P450 oxidoreductase (AACPR) and artemisinic aldehyde D11 reductase (DBR2)-in A. annua to significantly enhance artemisinin production. Our innovative approach utilized a co-expression strategy to optimize the artemisinin biosynthetic pathway, leading to a remarkable up to 200 % increase in artemisinin content in T1 transgenic plants compared to non-transgenic controls. The stability and efficacy of this transformation were confirmed in subsequent generations (T2), achieving a potential 232 % increase in artemisinin levels. Additionally, we optimized transgene expression to maintain plant growth and development, and performed untargeted metabolite analysis using GC-MS, which revealed significant changes in metabolite composition among T2 lines, indicating effective diversion of farnesyl diphosphate into the artemisinin pathway. This metabolic engineering breakthrough offers a promising and scalable solution for enhancing artemisinin production, representing a major advancement in the field of plant biotechnology and a potential strategy for more cost-effective malaria treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过共重表达六种关键生物合成酶提高黄花蒿的青蒿素产量。
疟疾仍然是一个全球性的健康问题,尤其是在资源有限的地区。青蒿素是从黄花蒿中提取的一种关键抗疟化合物,对治疗疟疾至关重要,但天然产量低阻碍了大规模生产。在这项研究中,我们采用先进的转基因技术共同表达了六种关键的生物合成酶--异戊烯基二磷酸异构酶(IDI)、法呢酰焦磷酸合成酶(FPS)、青蒿 4,11-二烯合成酶(ADS)、细胞色素 P450 单氧化酶(CYP71AV1)、细胞色素 P450 氧化还原酶(AACPR)和青蒿醛 D11(Kayani et al、2021[13])还原酶(DBR2),以显著提高青蒿素产量。我们的创新方法利用共表达策略优化了青蒿素生物合成途径,与非转基因对照相比,T1 转基因植株的青蒿素含量显著增加了 200%。这种转化的稳定性和有效性在后续世代(T2)中得到了证实,青蒿素含量可能增加了 232%。此外,我们还优化了转基因的表达,以保持植物的生长和发育,并利用气相色谱-质谱(GC-MS)进行了非靶向代谢物分析,结果显示 T2 品系的代谢物组成发生了显著变化,表明二磷酸法尼酯有效地转入了青蒿素途径。这一代谢工程方面的突破为提高青蒿素产量提供了一种前景广阔且可扩展的解决方案,是植物生物技术领域的一大进步,也是提高疟疾治疗成本效益的一种潜在策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
Effects of dynamic high-pressure microfluidization treatment on the structural, physicochemical, and digestive properties of wheat starch-Lonicera caerulea berry polyphenol complex. Aberrant serum-derived FN1 variants bind to integrin β1 on glomerular endothelial cells contributing to thin basement membrane nephropathy. Facile preparation of NiFe2O4 decorated chitosan-graphene oxide for efficient remediation of Co(II) and adsorption mechanism. Increased artemisinin production in Artemisia annua L. by co-overexpression of six key biosynthetic enzymes. Preparation of new green poly (amino amide) based on cellulose nanoparticles for adsorption of Congo red and its adaptive neuro-fuzzy modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1