Effects of dynamic high-pressure microfluidization treatment on the structural, physicochemical, and digestive properties of wheat starch-Lonicera caerulea berry polyphenol complex.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2024-10-05 DOI:10.1016/j.ijbiomac.2024.136150
Yue Li, Yifan Sun, Pengbao Shi, Chang Liu, Jing Guo, Suwen Liu
{"title":"Effects of dynamic high-pressure microfluidization treatment on the structural, physicochemical, and digestive properties of wheat starch-Lonicera caerulea berry polyphenol complex.","authors":"Yue Li, Yifan Sun, Pengbao Shi, Chang Liu, Jing Guo, Suwen Liu","doi":"10.1016/j.ijbiomac.2024.136150","DOIUrl":null,"url":null,"abstract":"<p><p>Polyphenol complexes can improve the physicochemical and functional properties of starch. In this study, a wheat starch-Lonicera caerulea berry polyphenol complex (WS-LCBP) was prepared using dynamic high-pressure microfluidization (DHPM). The effects of different DHPM pressures (150 and 250 MPa), number of cycles (1 and 3), and LCBP content (0 %, 6 %, 8 %, and 10 %) on the multiscale structure, physicochemical properties, and in vitro digestibility of WS-LCBP were examined. After a single 250 MPa DHPM cycle, Average particle size and water separation rate of WS were reduced by 42.40 % and 16.67 %, the freeze-thaw stability was significantly improved (P < 0.05), and the resistant starch (RS) content 68.67 % was significantly increased (P < 0.05). WS-LCBP has a V-shaped starch structure, which hinders gelatinization and increases enthalpy. The RS content of the WS-LCBP ranged from 72.46 % to 89.09 %, which was significantly higher (P < 0.05) than that of wheat starch subjected to a single 150 MPa DHPM cycle (36.31 %). Three 250 MPa DHPM cycles were beneficial for the formation of WS-LCBP. However, excessive DHPM treatment pressure and frequency reduced the recombination rate of LCBP and wheat starch. This study provides reference data for the industrial production of nutritionally functional wheat-resistant starch using green technologies.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.136150","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyphenol complexes can improve the physicochemical and functional properties of starch. In this study, a wheat starch-Lonicera caerulea berry polyphenol complex (WS-LCBP) was prepared using dynamic high-pressure microfluidization (DHPM). The effects of different DHPM pressures (150 and 250 MPa), number of cycles (1 and 3), and LCBP content (0 %, 6 %, 8 %, and 10 %) on the multiscale structure, physicochemical properties, and in vitro digestibility of WS-LCBP were examined. After a single 250 MPa DHPM cycle, Average particle size and water separation rate of WS were reduced by 42.40 % and 16.67 %, the freeze-thaw stability was significantly improved (P < 0.05), and the resistant starch (RS) content 68.67 % was significantly increased (P < 0.05). WS-LCBP has a V-shaped starch structure, which hinders gelatinization and increases enthalpy. The RS content of the WS-LCBP ranged from 72.46 % to 89.09 %, which was significantly higher (P < 0.05) than that of wheat starch subjected to a single 150 MPa DHPM cycle (36.31 %). Three 250 MPa DHPM cycles were beneficial for the formation of WS-LCBP. However, excessive DHPM treatment pressure and frequency reduced the recombination rate of LCBP and wheat starch. This study provides reference data for the industrial production of nutritionally functional wheat-resistant starch using green technologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态高压微流处理对小麦淀粉-忍冬浆果多酚复合物结构、理化和消化特性的影响
多酚复合物可以改善淀粉的物理化学和功能特性。本研究采用动态高压微流控(DHPM)技术制备了小麦淀粉-忍冬浆果多酚复合物(WS-LCBP)。研究了不同的 DHPM 压力(150 和 250 兆帕)、循环次数(1 和 3)和 LCBP 含量(0 %、6 %、8 % 和 10 %)对 WS-LCBP 的多尺度结构、理化性质和体外消化率的影响。在单次 250 兆帕 DHPM 循环后,WS 的平均粒径和水分离率分别降低了 42.40 % 和 16.67 %,冻融稳定性显著提高(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
Effects of dynamic high-pressure microfluidization treatment on the structural, physicochemical, and digestive properties of wheat starch-Lonicera caerulea berry polyphenol complex. Aberrant serum-derived FN1 variants bind to integrin β1 on glomerular endothelial cells contributing to thin basement membrane nephropathy. Facile preparation of NiFe2O4 decorated chitosan-graphene oxide for efficient remediation of Co(II) and adsorption mechanism. Increased artemisinin production in Artemisia annua L. by co-overexpression of six key biosynthetic enzymes. Preparation of new green poly (amino amide) based on cellulose nanoparticles for adsorption of Congo red and its adaptive neuro-fuzzy modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1