{"title":"The microbial communities of the rust layer were influenced by seawater microbial communities.","authors":"Shengxun Yao, Junxiang Lai, Congtao Sun, Maomi Zhao, Jizhou Duan, Xiufen Liao, Zihan Pan","doi":"10.1080/08927014.2024.2411076","DOIUrl":null,"url":null,"abstract":"<p><p>To reveal the responsible microorganisms of microbiologically-influenced-corrosion (MIC), using 16S rRNA and ITS sequencing techniques, we investigated the bacterial and fungal communities in rust layer and seawater. Results show that the corrosion-related genera of <i>Erythrobacter</i>, <i>norank_f__Rhodothermaceae</i>, and <i>Acinetobacter</i> bacteria, as well as <i>Aspergillus</i> fungi, were overrepresented in the rust layer, along with the <i>Pseudoalteromonas</i> and <i>Marinobacterium</i> bacteria in seawater, and <i>Ramlibacter</i>, <i>Aquimarina</i>, and <i>Williamsia</i> bacteria were first detected in the rust layer. SourceTracker analysis revealed that approximately 23.08% of bacteria and 21.48% of fungi originated from seawater. Stochastic processes governed the rust layer and seawater microbial communities, and network analysis showed coexistence and interaction among bacterial and fungal communities. These results indicate that the composition of microbial communities in the rust layer was influenced by the marine environmental microbial communities, which can provide basic data support for the control of MIC in marine-related projects.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"754-771"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2411076","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To reveal the responsible microorganisms of microbiologically-influenced-corrosion (MIC), using 16S rRNA and ITS sequencing techniques, we investigated the bacterial and fungal communities in rust layer and seawater. Results show that the corrosion-related genera of Erythrobacter, norank_f__Rhodothermaceae, and Acinetobacter bacteria, as well as Aspergillus fungi, were overrepresented in the rust layer, along with the Pseudoalteromonas and Marinobacterium bacteria in seawater, and Ramlibacter, Aquimarina, and Williamsia bacteria were first detected in the rust layer. SourceTracker analysis revealed that approximately 23.08% of bacteria and 21.48% of fungi originated from seawater. Stochastic processes governed the rust layer and seawater microbial communities, and network analysis showed coexistence and interaction among bacterial and fungal communities. These results indicate that the composition of microbial communities in the rust layer was influenced by the marine environmental microbial communities, which can provide basic data support for the control of MIC in marine-related projects.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.