Patricia Palafox-Rivera, Melvin R Tapia-Rodriguez, Julio Cesar Lopez-Romero, Marco A Lugo-Flores, Karen P Quintero-Cabello, Brenda A Silva-Espinoza, M Reynaldo Cruz-Valenzuela, Filomena Nazzaro, J Fernando Ayala-Zavala
{"title":"Exploring the potential of hydrolytic enzymes combined with antibacterial agents to disrupt pathogenic biofilms and disinfect released cells.","authors":"Patricia Palafox-Rivera, Melvin R Tapia-Rodriguez, Julio Cesar Lopez-Romero, Marco A Lugo-Flores, Karen P Quintero-Cabello, Brenda A Silva-Espinoza, M Reynaldo Cruz-Valenzuela, Filomena Nazzaro, J Fernando Ayala-Zavala","doi":"10.1080/08927014.2024.2435018","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms are bacterial communities encapsulated in a self-produced extracellular polymeric matrix comprising carbohydrates, proteins, lipids, and DNA. This matrix provides structural integrity while significantly enhancing bacterial antibiotic resistance, presenting substantial disinfection challenges. The persistence of biofilm-associated infections and foodborne outbreaks underscores the need for more effective disinfection strategies. Conventional antibacterial agents often are less effective against biofilm-protected cells compared to their efficacy against planktonic (non-attached) bacteria. Integrating hydrolytic enzymes, such as cellulases, proteases, and DNases, into disinfection protocols offers a promising approach by breaking down the biofilm matrix to expose the bacteria. However, the follow-up use of antibacterial agents is important, as enzymes alone do not possess bactericidal properties. Unlike traditional disinfectants, natural antibacterial agents work synergistically with enzymes, enhancing biofilm disruption without compromising the enzymatic activity through oxidation. This review offers a comprehensive analysis of the current knowledge and potential of combining hydrolytic enzymes with disinfectants to disrupt biofilms and eradicate the released bacterial cells, emphasizing applications for clinical and foodborne pathogens.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-13"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2435018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biofilms are bacterial communities encapsulated in a self-produced extracellular polymeric matrix comprising carbohydrates, proteins, lipids, and DNA. This matrix provides structural integrity while significantly enhancing bacterial antibiotic resistance, presenting substantial disinfection challenges. The persistence of biofilm-associated infections and foodborne outbreaks underscores the need for more effective disinfection strategies. Conventional antibacterial agents often are less effective against biofilm-protected cells compared to their efficacy against planktonic (non-attached) bacteria. Integrating hydrolytic enzymes, such as cellulases, proteases, and DNases, into disinfection protocols offers a promising approach by breaking down the biofilm matrix to expose the bacteria. However, the follow-up use of antibacterial agents is important, as enzymes alone do not possess bactericidal properties. Unlike traditional disinfectants, natural antibacterial agents work synergistically with enzymes, enhancing biofilm disruption without compromising the enzymatic activity through oxidation. This review offers a comprehensive analysis of the current knowledge and potential of combining hydrolytic enzymes with disinfectants to disrupt biofilms and eradicate the released bacterial cells, emphasizing applications for clinical and foodborne pathogens.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.