Bohao Zou, Jingjing Wang, Yi Ding, Zhenmiao Zhang, Yufen Huang, Xiaodong Fang, Ka Chun Cheung, Simon See, Lu Zhang
{"title":"A multi-modal deep language model for contaminant removal from metagenome-assembled genomes","authors":"Bohao Zou, Jingjing Wang, Yi Ding, Zhenmiao Zhang, Yufen Huang, Xiaodong Fang, Ka Chun Cheung, Simon See, Lu Zhang","doi":"10.1038/s42256-024-00908-5","DOIUrl":null,"url":null,"abstract":"Metagenome-assembled genomes (MAGs) offer valuable insights into the exploration of microbial dark matter using metagenomic sequencing data. However, there is growing concern that contamination in MAGs may substantially affect the results of downstream analysis. Current MAG decontamination tools primarily rely on marker genes and do not fully use the contextual information of genomic sequences. To overcome this limitation, we introduce Deepurify for MAG decontamination. Deepurify uses a multi-modal deep language model with contrastive learning to match microbial genomic sequences with their taxonomic lineages. It allocates contigs within a MAG to a MAG-separated tree and applies a tree traversal algorithm to partition MAGs into sub-MAGs, with the goal of maximizing the number of high- and medium-quality sub-MAGs. Here we show that Deepurify outperformed MDMclearer and MAGpurify on simulated data, CAMI datasets and real-world datasets with varying complexities. Deepurify increased the number of high-quality MAGs by 20.0% in soil, 45.1% in ocean, 45.5% in plants, 33.8% in freshwater and 28.5% in human faecal metagenomic sequencing datasets. Metagenome-assembled genomes (MAGs) provide insights into microbial dark matter, but contamination remains a concern for downstream analysis. Zou et al. develop a multi-modal deep language model that leverages microbial sequences to remove ‘unexpected’ contigs from MAGs. This approach is compatible with any contig binning tools and increases the number of high-quality bins.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 10","pages":"1245-1255"},"PeriodicalIF":18.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00908-5","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Metagenome-assembled genomes (MAGs) offer valuable insights into the exploration of microbial dark matter using metagenomic sequencing data. However, there is growing concern that contamination in MAGs may substantially affect the results of downstream analysis. Current MAG decontamination tools primarily rely on marker genes and do not fully use the contextual information of genomic sequences. To overcome this limitation, we introduce Deepurify for MAG decontamination. Deepurify uses a multi-modal deep language model with contrastive learning to match microbial genomic sequences with their taxonomic lineages. It allocates contigs within a MAG to a MAG-separated tree and applies a tree traversal algorithm to partition MAGs into sub-MAGs, with the goal of maximizing the number of high- and medium-quality sub-MAGs. Here we show that Deepurify outperformed MDMclearer and MAGpurify on simulated data, CAMI datasets and real-world datasets with varying complexities. Deepurify increased the number of high-quality MAGs by 20.0% in soil, 45.1% in ocean, 45.5% in plants, 33.8% in freshwater and 28.5% in human faecal metagenomic sequencing datasets. Metagenome-assembled genomes (MAGs) provide insights into microbial dark matter, but contamination remains a concern for downstream analysis. Zou et al. develop a multi-modal deep language model that leverages microbial sequences to remove ‘unexpected’ contigs from MAGs. This approach is compatible with any contig binning tools and increases the number of high-quality bins.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.