Hydration-effect Boosted Active Hydrogen Facilitates Neutral Ammonia Electrosynthesis from Nitrate Reduction

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-10-08 DOI:10.1002/adfm.202413070
Meng Zhang, Xuetao Cheng, Yun Duan, Junxiang Chen, Lei Wang, Yan-Qin Wang
{"title":"Hydration-effect Boosted Active Hydrogen Facilitates Neutral Ammonia Electrosynthesis from Nitrate Reduction","authors":"Meng Zhang, Xuetao Cheng, Yun Duan, Junxiang Chen, Lei Wang, Yan-Qin Wang","doi":"10.1002/adfm.202413070","DOIUrl":null,"url":null,"abstract":"Electrocatalytic nitrate reduction to ammonia (NO<sub>3</sub>RR) in a neutral medium is a green and effective strategy for treating nitrate pollution meanwhile producing ammonia. However, the insufficient active hydrogen (H<sup>*</sup>) on the catalyst surface resulting from the sluggish Volmer step (H<sub>2</sub>O → H<sup>+</sup> + OH<sup>−</sup>), and the competitive hydrogen evolution reaction (HER) caused by H<sup>*</sup> coupling severely restrict the enhancement of NO<sub>3</sub>RR activity. Herein, a hydration-effect boosted H<sup>*</sup>-rich strategy facilitating neutral ammonia electrosynthesis from nitrate reduction is proposed. The introduction of the hydration-effect-promoting element aluminum into the copper-based catalyst forming CuAlO<sub>2</sub>, which adjusts the electron density distribution in the catalyst system, and the resulting hydration-effect significantly promotes the H<sup>*</sup> generation in a neutral medium. Moreover, the rapid charge transfer at the CuO/CuAlO<sub>2</sub> interface facilitates the reaction kinetics and the H<sup>*</sup> diffusion. More importantly, the introduction of Al weakens the overly strong adsorption of intermediates by CuO, thereby accelerating the hydrogenation process and suppressing HER. Thus, under neutral conditions, CuO/CuAlO<sub>2</sub> reached a Faradaic efficiency and an ammonia yield as high as 97.81 ± 1.94% and 10.21 ± 0.64 mg h<sup>−1</sup> cm<sup>−2</sup> at −1.0 V versus RHE toward NO<sub>3</sub>RR.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202413070","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic nitrate reduction to ammonia (NO3RR) in a neutral medium is a green and effective strategy for treating nitrate pollution meanwhile producing ammonia. However, the insufficient active hydrogen (H*) on the catalyst surface resulting from the sluggish Volmer step (H2O → H+ + OH), and the competitive hydrogen evolution reaction (HER) caused by H* coupling severely restrict the enhancement of NO3RR activity. Herein, a hydration-effect boosted H*-rich strategy facilitating neutral ammonia electrosynthesis from nitrate reduction is proposed. The introduction of the hydration-effect-promoting element aluminum into the copper-based catalyst forming CuAlO2, which adjusts the electron density distribution in the catalyst system, and the resulting hydration-effect significantly promotes the H* generation in a neutral medium. Moreover, the rapid charge transfer at the CuO/CuAlO2 interface facilitates the reaction kinetics and the H* diffusion. More importantly, the introduction of Al weakens the overly strong adsorption of intermediates by CuO, thereby accelerating the hydrogenation process and suppressing HER. Thus, under neutral conditions, CuO/CuAlO2 reached a Faradaic efficiency and an ammonia yield as high as 97.81 ± 1.94% and 10.21 ± 0.64 mg h−1 cm−2 at −1.0 V versus RHE toward NO3RR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水合效应增强的活性氢促进硝酸盐还原的中性氨电合成
在中性介质中电催化硝酸盐还原成氨(NO3RR)是一种在生产氨的同时处理硝酸盐污染的绿色有效策略。然而,由于沃尔默步骤(H2O → H+ + OH-)缓慢,催化剂表面的活性氢(H*)不足,以及 H* 偶联引起的竞争性氢进化反应(HER),严重制约了 NO3RR 活性的提高。在此,我们提出了一种水合效应促进富含 H* 的策略,以促进硝酸盐还原中性氨的电合成。在铜基催化剂中引入水合效应促进元素铝,形成 CuAlO2,从而调整催化剂体系中的电子密度分布,由此产生的水合效应显著促进了中性介质中 H* 的生成。此外,CuO/CuAlO2 界面的快速电荷转移促进了反应动力学和 H* 扩散。更重要的是,Al 的引入削弱了 CuO 对中间产物过强的吸附力,从而加速了氢化过程并抑制了 HER。因此,在中性条件下,CuO/CuAlO2 在-1.0 V 相对于 RHE 时对 NO3RR 的法拉第效率和氨产量分别高达 97.81 ± 1.94% 和 10.21 ± 0.64 mg h-1 cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Anti-Swelling 3D Nanohydrogel for Efficient Osmotic Energy Conversion Interface and Defect Engineering in 3D Co3O4-Ov/TiO2 to Boost Simultaneous Removal of BPA and Cr(VI) upon Photoelectrocatalytic/Peroxymonosulfate (PEC/PMS) System All-Paper-Based, Flexible, and Bio-Degradable Pressure Sensor with High Moisture Tolerance and Breathability Through Conformally Surface Coating Hydration-effect Boosted Active Hydrogen Facilitates Neutral Ammonia Electrosynthesis from Nitrate Reduction Gradient Modulus Strategy for Alleviating Stretchable Electronic Strain Concentration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1