Structure and properties of homogeneous toughened poly(vinyl alcohol) blended membrane and exploration of application in membrane separation

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-10-09 DOI:10.1016/j.polymer.2024.127669
{"title":"Structure and properties of homogeneous toughened poly(vinyl alcohol) blended membrane and exploration of application in membrane separation","authors":"","doi":"10.1016/j.polymer.2024.127669","DOIUrl":null,"url":null,"abstract":"<div><div>Polyvinyl alcohol (PVA) has excellent physical and chemical properties; however, its rigidity easily leads to brittleness and breakage during use. Additionally, due to intramolecular hydrogen bonding, the dense structure of the film limits its application. This research used a self-toughening approach by homogeneously blending PVA 0588 and PVA 0499 with different molecular weights to enhance the toughness of PVA and create a porous structure for broader application in membrane separation. Porous PVA membranes were then produced through mechanical stretching. Rheological testing, differential scanning calorimetry, and dynamic thermomechanical analysis confirmed that the blend system is partially compatible. Mechanical characterization revealed that adding PVA 0499 decreased the tensile modulus, strength, and bending modulus of the blended film but increased the elongation at break, reaching a maximum of 179 %. This result indicates that homogeneous blending effectively achieved PVA self-toughening. After this, the PVA blended membrane underwent mechanical stretching. Results showed that the stretched membrane developed a porous structure with a PVA 0588 content of 60 wt%, yielding a pure water flux of 70.3 L m<sup>−2</sup> h<sup>−1</sup> MPa<sup>−1</sup> and a glucan rejection rate of 91.07 %. The molecular weight cut-off test demonstrated that the resulting porous membrane was suitable for water treatment, effectively filtering substances with a molecular weight of ≥70 kDa. The membrane also exhibited notable antifouling properties. The hydrophilicity and high roughness of the porous membrane facilitated the formation of additional hydrogen bonds between the membrane surface and water molecules, thereby reducing direct contact between pollutants and the membrane surface. This study provides preliminary theoretical and experimental insights into enhancing PVA toughness and expanding its applications in membrane separation. Furthermore, homogeneous blending opens new avenues for improving the mechanical performance of polymers.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003238612401005X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polyvinyl alcohol (PVA) has excellent physical and chemical properties; however, its rigidity easily leads to brittleness and breakage during use. Additionally, due to intramolecular hydrogen bonding, the dense structure of the film limits its application. This research used a self-toughening approach by homogeneously blending PVA 0588 and PVA 0499 with different molecular weights to enhance the toughness of PVA and create a porous structure for broader application in membrane separation. Porous PVA membranes were then produced through mechanical stretching. Rheological testing, differential scanning calorimetry, and dynamic thermomechanical analysis confirmed that the blend system is partially compatible. Mechanical characterization revealed that adding PVA 0499 decreased the tensile modulus, strength, and bending modulus of the blended film but increased the elongation at break, reaching a maximum of 179 %. This result indicates that homogeneous blending effectively achieved PVA self-toughening. After this, the PVA blended membrane underwent mechanical stretching. Results showed that the stretched membrane developed a porous structure with a PVA 0588 content of 60 wt%, yielding a pure water flux of 70.3 L m−2 h−1 MPa−1 and a glucan rejection rate of 91.07 %. The molecular weight cut-off test demonstrated that the resulting porous membrane was suitable for water treatment, effectively filtering substances with a molecular weight of ≥70 kDa. The membrane also exhibited notable antifouling properties. The hydrophilicity and high roughness of the porous membrane facilitated the formation of additional hydrogen bonds between the membrane surface and water molecules, thereby reducing direct contact between pollutants and the membrane surface. This study provides preliminary theoretical and experimental insights into enhancing PVA toughness and expanding its applications in membrane separation. Furthermore, homogeneous blending opens new avenues for improving the mechanical performance of polymers.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
均质增韧聚乙烯醇共混膜的结构和性能及在膜分离中的应用探索
聚乙烯醇(PVA)具有优异的物理和化学特性,但其刚性容易导致使用过程中的脆性和破损。此外,由于分子内氢键的作用,薄膜的致密结构也限制了其应用。本研究采用了一种自增韧方法,将不同分子量的 PVA 0588 和 PVA 0499 均匀混合,以增强 PVA 的韧性并形成多孔结构,从而在膜分离领域获得更广泛的应用。然后,通过机械拉伸生产出多孔 PVA 膜。流变学测试、差示扫描量热仪和动态热力学分析证实,混合体系具有部分相容性。机械特性分析表明,添加 PVA 0499 会降低共混膜的拉伸模量、强度和弯曲模量,但会增加断裂伸长率,最大可达 179%。这一结果表明,均匀混合能有效实现 PVA 的自增韧。之后,PVA 共混膜进行了机械拉伸。结果表明,拉伸膜形成了多孔结构,PVA 0588 含量为 60 wt%,纯水通量为 70.3 L-m-2-h-1-MPa-1,葡聚糖排斥率为 91.07%。分子量截断测试表明,所生成的多孔膜适用于水处理,可有效过滤分子量≥70 kDa 的物质。该膜还具有显著的防污性能。多孔膜的亲水性和高粗糙度有利于膜表面与水分子之间形成额外的氢键,从而减少污染物与膜表面的直接接触。这项研究为增强 PVA 韧性和扩大其在膜分离领域的应用提供了初步的理论和实验见解。此外,均匀混合为改善聚合物的机械性能开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Excellent Energy Storage Performance of Multi-Alternating-Layer Structured PMMA/PVDF Dielectric Composite at High-Temperature Realization of the shape memory effect in a composite material PLA/Diopside with different supramolecular structures PCTFE Microporous Membrane with High Corrosion-resistance and Ultra-fast Oil/water Separation Performances Conjugated Tetraphenylethene-based Polymers for Supercapacitor Cis-1,4-Specific Polymerization of 1,3-Conjugated Dienes with Bis(benzimidazole)NiCl2 Catalyst System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1