Impact of hydrophobic and hydrophilic surface properties on Pseudomonas aeruginosa adhesion in materials used in mineral water wells.

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-08 DOI:10.1080/08927014.2024.2410771
Danilo Vilas Boas, Clara M G Lima, Larissa P Margalho, Dionísio P Amorim-Neto, Héctor D S Canales, Wilson J F Lemos Junior, Ana Carolina Ramos, Giancarlo Saraiva, Anderson S Sant'Ana
{"title":"Impact of hydrophobic and hydrophilic surface properties on <i>Pseudomonas aeruginosa</i> adhesion in materials used in mineral water wells.","authors":"Danilo Vilas Boas, Clara M G Lima, Larissa P Margalho, Dionísio P Amorim-Neto, Héctor D S Canales, Wilson J F Lemos Junior, Ana Carolina Ramos, Giancarlo Saraiva, Anderson S Sant'Ana","doi":"10.1080/08927014.2024.2410771","DOIUrl":null,"url":null,"abstract":"<p><p>Microbiologically contaminated water is a significant source of infections in humans and animals, with <i>Pseudomonas aeruginosa</i> (PSA) being particularly concerning due to its ability to thrive in water environments and its resistance to many disinfectants. Therefore, this study investigates the adhesion potential of PSA strains on various materials used in mineral water extraction wells, focusing on hydrophobic and hydrophilic properties. Mineral water samples were collected from three wells (P-01, P-07, and P-08) within the Guarani Aquifer System and Fractured Aquifer System (SAF) in Brazil. The physicochemical properties of the water, including concentrations of Sr (strontium), Fe (iron), Si (silicon), SO<sub>4</sub><sup>2-</sup> (sulfate ions), Cl<sup>-</sup> (chloride ions), and ORP (oxidation-reduction potential), were analyzed. Results indicated higher PSA adhesion on hydrophobic materials, particularly high-density polyethylene (HDPE) and geomechanically plasticized polyvinyl chloride (PVC). Multiple correlation analyses revealed positive correlations between PSA adhesion on hydrophilic materials and Sr, Fe, Si, SO<sub>4</sub><sup>2-</sup>, and Cl<sup>-</sup> concentrations. Conversely, ORP negatively correlated with bacterial adhesion on PVC surfaces, suggesting higher ORP values reduced PSA attachment. These findings highlight the importance of water composition and material properties in influencing bacterial adhesion and potential biofilm formation in mineral water extraction systems.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"735-742"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2410771","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbiologically contaminated water is a significant source of infections in humans and animals, with Pseudomonas aeruginosa (PSA) being particularly concerning due to its ability to thrive in water environments and its resistance to many disinfectants. Therefore, this study investigates the adhesion potential of PSA strains on various materials used in mineral water extraction wells, focusing on hydrophobic and hydrophilic properties. Mineral water samples were collected from three wells (P-01, P-07, and P-08) within the Guarani Aquifer System and Fractured Aquifer System (SAF) in Brazil. The physicochemical properties of the water, including concentrations of Sr (strontium), Fe (iron), Si (silicon), SO42- (sulfate ions), Cl- (chloride ions), and ORP (oxidation-reduction potential), were analyzed. Results indicated higher PSA adhesion on hydrophobic materials, particularly high-density polyethylene (HDPE) and geomechanically plasticized polyvinyl chloride (PVC). Multiple correlation analyses revealed positive correlations between PSA adhesion on hydrophilic materials and Sr, Fe, Si, SO42-, and Cl- concentrations. Conversely, ORP negatively correlated with bacterial adhesion on PVC surfaces, suggesting higher ORP values reduced PSA attachment. These findings highlight the importance of water composition and material properties in influencing bacterial adhesion and potential biofilm formation in mineral water extraction systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
疏水和亲水表面特性对矿泉水井所用材料中铜绿假单胞菌粘附性的影响。
受微生物污染的水是人类和动物感染的一个重要来源,其中铜绿假单胞菌(PSA)尤其令人担忧,因为它能够在水环境中繁殖,并对许多消毒剂具有抗性。因此,本研究调查了 PSA 菌株在矿泉水提取井所用各种材料上的粘附潜力,重点关注疏水性和亲水性。矿泉水样本取自巴西瓜拉尼含水层系统和断裂含水层系统(SAF)中的三口井(P-01、P-07 和 P-08)。分析了水的物理化学特性,包括 Sr(锶)、Fe(铁)、Si(硅)、SO42-(硫酸根离子)、Cl-(氯离子)和 ORP(氧化还原电位)的浓度。结果表明,PSA 在疏水性材料上的附着力更高,尤其是在高密度聚乙烯 (HDPE) 和地质力学塑化聚氯乙烯 (PVC) 上。多重相关分析表明,亲水性材料上的 PSA 附着力与 Sr、Fe、Si、SO42- 和 Cl- 的浓度呈正相关。相反,ORP 与 PVC 表面的细菌附着力呈负相关,表明较高的 ORP 值会降低 PSA 的附着力。这些发现强调了水成分和材料特性在影响矿泉水提取系统中细菌附着和潜在生物膜形成方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
期刊最新文献
Ozonized water as a promising strategy to remove biofilm formed by Pseudomonas spp. on polyethylene and polystyrene surfaces. Exploring the potential of hydrolytic enzymes combined with antibacterial agents to disrupt pathogenic biofilms and disinfect released cells. Anti-biofilm effect of ferulic acid against Enterobacter hormaechei and Klebsiella pneumoniae: in vitro and in silico investigation. Anti-biofouling marine diterpenoids from Okinawan soft corals. Effects of epigallocatechin gallate on the development of matrix-rich Streptococcus mutans biofilm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1