Sarah Cook, David Osborn, Arti Maini, Ravi Parekh, Shamini Gnani, Thomas Beaney, Ana Luisa Neves, Sonia Saxena, Jennifer K Quint
{"title":"Recording of Alcohol Use Disorder in Electronic Health Records: Developing a Recommended Codelist for Research.","authors":"Sarah Cook, David Osborn, Arti Maini, Ravi Parekh, Shamini Gnani, Thomas Beaney, Ana Luisa Neves, Sonia Saxena, Jennifer K Quint","doi":"10.2147/CLEP.S477778","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Electronic health records (EHR) are valuable resources for health research; however, their use is challenging. A validated alcohol use disorder (AUD) codelist for UK primary care is needed to improve population-based research in this patient group. We aimed to develop an AUD codelist for use in the Clinical Practice Research Datalink (CPRD) Aurum database, a UK EHR primary-care database.</p><p><strong>Methods: </strong>The CPRD code browser was searched using keywords related to alcohol use using a previously developed search strategy. The resulting codes were categorised as AUD if they were: a) diagnostic of AUD, b) indicated alcohol withdrawal, or c) indicated chronic alcohol-related harm (physical or mental). Codes related to alcohol use but not used to define AUD were also classified into relevant categories (alcohol status, acute harm, and alcohol screening). All codes were categorised independently by at least two reviewers (one person reviewed all codes and five reviewers (all practising GPs) each reviewed a subset of codes (100-200 codes each). Disagreements in categorisation were discussed by at least three coders and a consensus was reached. The reliability of categorisation was assessed using kappa statistics.</p><p><strong>Results: </strong>In total, 556 potential codes related to alcohol use were identified. The Kappa for reliability between coders was moderate for both AUD (0.72) and across all categories (0.62), with substantial variability between coders (AUD: 0.33-0.97; all categories 0.36-0.74). In the final codelist, 138 codes were included as indicating AUD: 38 codes identified which indicated diagnosis of AUD, 14 indicating withdrawal plus 85 codes indicating chronic alcohol-related harm (41 physical health and 44 mental health).</p><p><strong>Conclusion: </strong>Many codes are used in primary care to record alcohol use and associated harms, and there is substantial variability in how clinicians categorise them. While future work formally validating the codelist against gold standard clinical reviews and qualitative work with General Practitioners is needed for a deeper understanding of coding processes, we have documented here the process used for the development of an AUD codelist within primary care which can be used as a reference for future research.</p>","PeriodicalId":10362,"journal":{"name":"Clinical Epidemiology","volume":"16 ","pages":"673-681"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460355/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/CLEP.S477778","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Electronic health records (EHR) are valuable resources for health research; however, their use is challenging. A validated alcohol use disorder (AUD) codelist for UK primary care is needed to improve population-based research in this patient group. We aimed to develop an AUD codelist for use in the Clinical Practice Research Datalink (CPRD) Aurum database, a UK EHR primary-care database.
Methods: The CPRD code browser was searched using keywords related to alcohol use using a previously developed search strategy. The resulting codes were categorised as AUD if they were: a) diagnostic of AUD, b) indicated alcohol withdrawal, or c) indicated chronic alcohol-related harm (physical or mental). Codes related to alcohol use but not used to define AUD were also classified into relevant categories (alcohol status, acute harm, and alcohol screening). All codes were categorised independently by at least two reviewers (one person reviewed all codes and five reviewers (all practising GPs) each reviewed a subset of codes (100-200 codes each). Disagreements in categorisation were discussed by at least three coders and a consensus was reached. The reliability of categorisation was assessed using kappa statistics.
Results: In total, 556 potential codes related to alcohol use were identified. The Kappa for reliability between coders was moderate for both AUD (0.72) and across all categories (0.62), with substantial variability between coders (AUD: 0.33-0.97; all categories 0.36-0.74). In the final codelist, 138 codes were included as indicating AUD: 38 codes identified which indicated diagnosis of AUD, 14 indicating withdrawal plus 85 codes indicating chronic alcohol-related harm (41 physical health and 44 mental health).
Conclusion: Many codes are used in primary care to record alcohol use and associated harms, and there is substantial variability in how clinicians categorise them. While future work formally validating the codelist against gold standard clinical reviews and qualitative work with General Practitioners is needed for a deeper understanding of coding processes, we have documented here the process used for the development of an AUD codelist within primary care which can be used as a reference for future research.
期刊介绍:
Clinical Epidemiology is an international, peer reviewed, open access journal. Clinical Epidemiology focuses on the application of epidemiological principles and questions relating to patients and clinical care in terms of prevention, diagnosis, prognosis, and treatment.
Clinical Epidemiology welcomes papers covering these topics in form of original research and systematic reviews.
Clinical Epidemiology has a special interest in international electronic medical patient records and other routine health care data, especially as applied to safety of medical interventions, clinical utility of diagnostic procedures, understanding short- and long-term clinical course of diseases, clinical epidemiological and biostatistical methods, and systematic reviews.
When considering submission of a paper utilizing publicly-available data, authors should ensure that such studies add significantly to the body of knowledge and that they use appropriate validated methods for identifying health outcomes.
The journal has launched special series describing existing data sources for clinical epidemiology, international health care systems and validation studies of algorithms based on databases and registries.